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Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer
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We identify an angle-dependent momentum scale as the fundamental property of a bilayer composed of mutually
rotated graphene layers. The interlayer scattering processes at these characteristic momentum values define an ef-
fective Brillouin zone (a Jones zone) which, in general, differs from the Brillouin zone generated by the real-space
lattice, which is physically irrelevant. From this we develop a numerical method that increases, for the twist bilayer,
the efficiency of the standard tight-binding method by a factor of ≈103 at no loss of accuracy. The efficiency of the
method is based on (i) the fact that the twist Hamiltonian is exceptionally sparse in a basis of single-layer graphene
(SLG) states, (ii) a solution of trivial Diophantine problem (Bézout’s identity) allows one to know in advance
which matrix elements take nonzero values, and (iii) to access the electronic structure in a few electron volts about
the Dirac point a truncated SLG basis consisting only of states in a somewhat larger energy window are required,
leading to a much reduced size of the Hamiltonian. This allows a complete survey of the system which reveals
(i) an angle-dependent series of van Hove singularities, (ii) an increasing mixing of SLG states as the twist angle
is reduced leading to the appearance of localization of the twist bilayer wave functions at all energies in the small-
angle limit, and (iii) a zero-energy peak in the density of states in an approximately self-similar small-angle regime.
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I. INTRODUCTION

Graphene layers with a mutual rotation present one of
the richest manifestations of the physics of this remarkable
material.1–14 The crucial physical parameter is the rotation
angle θ , and the physical nature of the system depends strongly
on the value of this angle. The physics of the twist bilayer
includes at large angles a low-energy electronic decoupling of
the layers, an angle-dependent Fermi velocity at intermediate
angles, and a small-angle regime in which the electronic
properties appear coupled to the emergence of a geometric
moiré pattern in remarkable ways. New effects continue to
be discovered, most recently the experimental identification
of “missing states” in the quantum Hall effect, from which is
inferred the existence of localized states, the origin of which
is yet to be elucidated.15

Despite sustained investigation a clear theoretical under-
standing of this system has yet to emerge. There are two
principal difficulties: (i) numerical calculation, and, hence,
verification of approximate analytical theories, is impossible
for the important small-angle case due to the diverging size
of the unit cell and (ii) the applicability of Bloch’s theorem is
problematic; twist bilayer systems with very similar rotation
angle, and, hence, very similar lattices and physical properties,
may have wildly different translation symmetries. Theoretical
progress therefore has mainly been driven by the development
of effective low-energy theories, in which details of the
lattice are dispensed with. These have been developed both
for the large-6 and small-angle1,8,13 regimes. Among the key
theoretical insights that have been obtained in this way are
(i) the existence of a characteristic angle-dependent energy
scale and a related suppression of the Fermi velocity for angles
θ < 15◦,1 (ii) the identification of a certain lattice symmetry,
“sublattice exchange symmetry,”6 and (iii) the derivation of a
low-energy effective Hamiltonian in which the moiré length
scale (see Fig. 1) plays a central role, from which follows the
applicability of Bloch’s theorem at low energies.8

In contrast to such approaches in this work we present
a theory of the twist bilayer that retains the lattice, and,
hence, is valid for all energies, but find that, remarkably, the
lattice by itself vanishes from the theory. This occurs via the
emergence of a characteristic momentum scale that depends
only on the rotation angle of the bilayer and vanishes as θ → 0
and that we identify as the fundamental physical property of
this system. Near the Dirac point this is equivalent to the
characteristic energy scale discussed in earlier works; however,
away from the Dirac point it yields other energy scales that
we demonstrate govern the generation of an angle-dependent
series of high-energy van Hove singularities. Furthermore,
the theory we deploy here yields (i) an explanation for the
applicability of Bloch’s theorem free from any approxima-
tions, and valid at all energies, and (ii) a numerical method
as accurate as standard tight-binding calculations but several
orders of magnitude faster. This numerical approach employs a
basis of single-layer graphene states for the twist Hamiltonian
that we show has two important properties: first, it leads to
an exceptionally sparse structure for the twist Hamiltonian,
allowing the deployment of an efficient Lanczos scheme for the
diagonalization and, more importantly, we show that a solution
to Bézout’s identity (see Appendix), numerically trivial to
obtain, allows one to know in advance which interlayer matrix
elements take nonzero value. This avoids the evaluation of a
huge number of negligible matrix elements, which themselves
become numerically expensive in the small-angle limit.

With this numerical approach in hand we are able to provide
a complete survey of the twist bilayer system, from large angles
down to an approximately self-similar very small angle regime.
In particular, we find that an increasing proportion of all states
of the twist bilayer become localized as the rotation angle
decreases, thus providing a possible explanation for the origin
of the “missing states” in recent quantum Hall experiments.

The remainder of this article is structured as follows:
we, first, present a lattice-based theory of the twist bilayer
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FIG. 1. (Color online) Twist bilayer with a mutual rotation of
θ = 1.20◦ showing the emergence of a moiré lattice. Dashed lines
indicate the real-space commensuration primitive cell; circles indicate
regions of the lattice of AA and AB stacking. The moiré length D

is defined as the separation between regions of AA (or AB) stacking
and is here equal in length of the primitive vectors of the lattice.

that both explains the emergence of an angle-dependent
momentum scale and underpins our numerical technique
(Sec. II); subsequently, we provide details of the numerical
technique itself (Sec. III, and Appendix); this is then followed
by a section in which we explore the properties of the twist
bilayer as a function of angle (Sec. IV), after which we
conclude (Sec. V).

II. THEORY

We first recall the basic geometry of the twist bilayer for
the commensurate case. A number of equivalent formulations
of this have been presented in the literature; here we follow
that of Ref. 5. A unique commensuration geometry is gen-
erated by a co-prime integer pair (p,q) with a rotation an-
gle given by θ = tan−1 [(3(q/p)2 − 1)/(3(q/p)2 + 1)]. These
commensurations may be classified according to whether
p is divisible by 3 and are conveniently labeled by the
parameter δ = 3/ gcd(p,3) (here gcd indicates the greatest
common divisor). These two cases are related to the even
and odd symmetry classes introduced in Ref. 6, although
the precise correspondence between the parameter δ and the
symmetry class depends on the initial choice of rotation axis
and stacking. The resulting commensuration vectors, i.e., the
primitive vectors of the twist bilayer, are for the case δ = 1
given by

t1 = 1

γ
[−(p + 3q) a1 − 2p a2], (1)

t2 = 1

γ
[2p a1 − (p − 3q) a2], (2)

and for δ = 3 by

t1 = 1

γ
[−(p + q) a1 + 2q a2], (3)

t2 = 1

γ
[−2q a1 − (p − q) a2], (4)

where γ = gcd(p + 3q,p − 3q), and a1,2 are the lattice
vectors of the unrotated graphene cell. Evidently, there exists
a “many-to-one” relation between the rotation angle, which
may be expressed as a function of q/p, and the lattice vectors
t1,2, which depend on p,q separately. On the other hand, the
emergent moiré lattice that is found for θ � 15◦ depends only
on the rotation angle θ through the moiré length D = a

2 sin θ/2 ,
where a is the lattice parameter (see Fig. 1).

To investigate electronic properties of this complex
geometry we follow Ref. 5 and consider the twist bilayer
potential to be a superposition of that of each separate layer,
i.e., VB = V (1) + V (2) with the superscript a layer index, and
as a basis set for the Hamiltonian take the direct product of
the single-layer graphene (SLG) eigenstates from each layer.
That is, for a given k vector k in the bilayer Brillouin zone
(BZ), the appropriate basis elements comprise the set of SLG
eigenstates from layer 1 (2) {|φ(1)

i1k1
〉} ({|φ(2)

i2k2
〉}) that satisfy

k1(2) = k + α1(2)g1 + β1(2)g2, (5)

with g1,2 the reciprocal lattice vectors of the twist bilayer and
α1(2), β1(2) integers such that k1(2) falls in the Brillouin zone of
layer 1 (2). Here we have introduced a notation for SLG eigen-
states that we follow throughout this article: |φ(n)

inkn
〉 represents a

SLG eigenstate from layer n, and in and kn label a state and k-
vector index, respectively. This basis set is, evidently, nothing
more than the usual “folding back” condition encountered
in superlattice geometries. Nevertheless, it already serves to
illustrate the essential difficulty in dealing with this system
from a lattice-based perspective. To that end we recall5 that
the bilayer reciprocal lattice vectors are, for δ = 1, given by

g1 = γ

3(p2 + 3q2)
[(p + 3q)b1 + 2pb2]

(6)
g2 = γ

3(p2 + 3q2)
[−2pb1 − (p − 3q)b2],

and for δ = 3 by

g1 = γ

p2 + 3q2
[−(p − q)b1 + 2qb2]

(7)
g2 = γ

p2 + 3q2
[−2qb1 − (p + q)b2],

where b1,2 are the standard reciprocal lattice vectors of the un-
rotated graphene lattice and, like their real-space counterparts
t1,2, depend on p,q separately. There thus exists a many-to-one
relation between g1,2 and the rotation angle. However, as
the g1,2 determine which SLG states may be coupled by the
interlayer interaction (via the folding back procedure), it then
appears as if the bilayer electronic structure has no dependence
on rotation angle: a paradoxical situation. This is the essence
of the problem in application of Bloch’s theorem to this system.

To resolve this breakdown in the naive application of lattice
physics we, first, notice that in the basis outlined above
the twist bilayer Hamiltonian assumes a convenient 2 × 2
structure in layer space: layer diagonal blocks that contain
only single-layer information and layer off-diagonal blocks
which describe the interlayer coupling and consist of elements
of the form 〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉. Evidently, such matrix elements

are of mixed translational symmetry, that is, are composed of
objects possessing the translational symmetry of SLG, as well
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as objects possessing the translation symmetry of rotated SLG.
If we then insert a Fourier expansion for each of these we find〈

φ
(1)
i1k1

∣∣VB

∣∣φ(2)
i2k2

〉 =
∑

G1,RG2

C
i2k2+RG2
i1k1+G1

δG1=RG2+k2−k1 , (8)

where the sets {G1} ({RG2}) consist of reciprocal lattice
vectors of SLG (rotated SLG). As stressed in Ref. 5, the
advantage of this approach is that the interlayer matrix
elements have been split into an electronic part, the C

i2k2+RG2
i1k1+G1

and a purely geometric term δG1=RG2+k2−k1 . This represents an
interlayer momentum conservation condition (a selection rule)
and only terms for which

G1 = RG2 + k2 − k1 (9)

contribute to the matrix element sum. The solutions of this
equation may be visualized as the set of coincident points
between the reciprocal lattice of SLG and the reciprocal lattice
of rotated SLG, with an additional shift of k2 − k1 applied
to the latter. Interestingly, then, the electronic structure of
the twisted bilayer leads to a reciprocal space analog of the
real-space commensuration condition for the existence of a
(periodic) lattice. A crucial difference from the real-space
commensuration problem is the term k2 − k1, and this results
in the reciprocal space commensuration lattice being shifted
off the � point by some vector 	G, as illustrated in Fig. 2.
One might intuitively expect that different k2 − k1 in Eq. (9)
will lead to different shifts 	G of the same commensuration
lattice (i.e., a commensuration lattice with identical primitive
vectors). This is indeed the case, and the proof of this we
give in Appendix. To draw out further the separation between
electronic and geometric aspects of the interlayer matrix
element, we note that the Fourier components C

i2k2+RG2
i1k1+G1

are
expected to decrease with increasing magnitude of G1 and
RG2 (due to to the smoothness of the bilayer potential in real
space). Now the magnitude of the smallest contributing G1

and RG2 as allowed by the selection rule Eq. (9) is evidently

|ΔG|

FIG. 2. (Color online) Reciprocal space analog of the real-space
commensuration geometry. Any interlayer matrix element of the
bilayer potential and single-layer graphene states, 〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉,

leads to a reciprocal space commensuration between the unrotated
SLG reciprocal lattice (black filled circles) and the rotated SLG
reciprocal lattice shifted by k2 − k1 (light filled circles). Only
coincident points between these two lattices (large circles) contribute
to the matrix element, which depends strongly on the shift of this
coincident lattice off the origin, indicated by the arrow |	G|, see
Fig. 3 and Sec. II for details.

FIG. 3. (Color online) Main plot displays the logarithm of the

averaged interlayer coupling matrix element log10 |〈φ(1)
i1k1

|VB |φ(2)
i2k2

〉|2,
plotted as a function of the shift |	G| for several rotation angles.
The quantity |	G| is the shift off the origin of a reciprocal space
commensuration lattice that results from a Fourier analysis of the
matrix element, see Sec. II for details. Evidently matrix elements for
which |	G| > 4 are effectively zero, and the corresponding single-
layer states, are not coupled by the bilayer potential. The average
is taken over the set of matrix elements for which the (single-layer
graphene) k vectors k1 and k2 generate the same shift term |	G| and
where k1 and k2 run over all k vectors in the unrotated and rotated
Brillouin zones that fold back to the K point of the bilayer Brillouin
zone; a similar result is found for any choice of k vector in the bilayer
Brillouin zone. The inset displays the region of the main graph for
which the average of the matrix elements is less than 10−6 and where
the open symbols represent the standard deviation of the ensemble of
matrix elements for which the average is computed.

determined by the magnitude of 	G. We thus conclude that
the magnitude of the interlayer matrix elements themselves
should show a marked decrease with increasing |	G|.

To confirm this dependence a numerical investigation is
required, and to that end we average over all matrix elements
in the bilayer Hamiltonian for which the difference of the basis
momenta k2 − k1 yields a specific value of |	G| and then
plot this average as a function of |	G|, as shown in Fig. 3.
To evaluate the interlayer matrix elements we use the tight-
binding method recently deployed to study graphene twist
flakes; see Ref. 16 for details of this. To determine the |	G| for
each matrix element we solve Eq. (9) numerically, as described
in Appendix. The set of matrix elements that we use to
determine the averages shown in Fig. 3 consists of all interlayer
matrix elements in the bilayer Hamiltonian evaluated at the K

point in the bilayer Brillouin zone. Virtually identical results
are obtained for any choice of k vector. A number of points
may immediately be noted from Fig. 3: (i) the average matrix
element decays with increasing shift |	G|, and this decay is
in fact exponential; (ii) already by |	G| = 3 the magnitude
is reduced by four orders as compared to the value for
|	G| = 0; and (iii) the form of the decay is not very sensitive
to rotation angle. (Note that here, and subsequently throughout
this article, we present all reciprocal space quantities in units
of 2π/a. Similarly, all quantities in real space will be presented
in units of a, with a the graphene lattice parameter.)

From this analysis we conclude that all matrix elements
for which |	G| > 4 are effectively zero and single-layer
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graphene states for which the momenta difference k2 − k1

leads to |	G| greater than this value are not coupled by the
bilayer potential. It thus is not the electronic C

i2k2+RG2
i1k1+G1

that are
important for understanding the interlayer interaction but the
geometric selection rule Eq. (9). The physics of the interlayer
interaction is evidently determined by which k2 − k1 lead to
|	G| < 4 and to address this problem we must now consider
explicit solutions to Eq. (9).

The solution set {G1} of Eq. (9), expressed as G1 = m1b1 +
m2b2, is for the case δ = 1 given by(

m1

m2

)
= α

(
p + 3q

2p

)
+ β

( −2p

−p + 3q

)
+ γ

6p

(
l1 − 2l2

2l1 − l2

)
(10)

and for δ = 3 by(
m1

m2

)
= α

(−p + q

2q

)
+ β

(
2q

p + q

)
− γ

2p

(
l1

l2

)
(11)

(see Ref. 5 and also Appendix), where α,β are integers and l1,2

the coefficients which arise when the SLG k-vector difference
k2 − k1 is expressed in terms of the bilayer reciprocal lattice
vectors: k2 − k1 = l1g1 + l2g2.

From these equations we see that when

k2 − k1 = n1g(c)
1 + n2g(c)

1 (12)

with n1,2 integers, and where the coupling vectors g(c)
1,2 are

defined by

g(c)
1 = −2p

γ
(g1 + 2g2) g(c)

2 = 2p

γ
(2g1 + g2) (13)

for the case when δ = 1 and

g(c)
1 = −2p

γ
g1 g(c)

2 = −2p

γ
g2 (14)

for the case δ = 3, the shift 	G then is given by

	G = n1b1 + n2b2. (15)

This may be seen directly by the substitution of Eqs. (12)
and (13) into Eq. (10) or Eqs. (12) and (14) into Eq. (11). We
thus see that it is only when the difference of the single-layer
momenta k2 − k1 is given by a low-integer multiple of the
coupling momenta vectors will the resulting interlayer matrix
element be nonzero; all other matrix elements belong to the
extended “tail” of Fig. 3.

Therefore, it is these vectors which, as far as the electronic
properties of the twist bilayer are concerned, are the only
relevant reciprocal space vectors. The interlayer conservation
of momentum ensures that the usual geometric reciprocal
space vectors g1,2 are physically irrelevant and, therefore, the
bilayer Brillouin zone constructed from g1,2 is also physically
irrelevant. The physical reciprocal space primitive cell is in-
stead that constructed from the coupling vectors g(c)

1,2.17 Finally,

we note that from Eq. (13) we have g(c) = |g(c)
1,2| = 2p

γ

√
3g,

and similarly from Eq. (14) g(c) = 2p

γ
g, where g = |g1,2|. On

the other hand, from the formulas for the rotation angle and
g1,2 given above, one finds g = 2γ

3p
sin θ/2 (for δ = 1) and

g = 2γ√
3p

sin θ/2 (for δ = 3). Combining these results for g(c)

and g then immediately yields

g(c) = 4√
3

sin
θ

2
, (16)

which is independent of the lattice parameters γ,δ,p,q. We
thus see that the momentum scale on which single-layer
graphene states are coupled by the bilayer interaction depends
only on the rotation angle. The lattice has “vanished by
itself,” without recourse to any additional (e.g., low-energy
or continuum) approximation. Interestingly, this momentum
scale is exactly that which corresponds to the real-space moiré
length scale D = 1

2 sin θ/2 ; the magnitude of the reciprocal
lattice vectors for a hexagonal lattice of lattice parameter D

(i.e., the moiré lattice) is exactly equal to g(c).
To illustrate this for a specific example we consider a twist

bilayer for which (p,q) = (1,5), corresponding to a rotation
angle of θ = 13.174◦. We note that for this commensuration
geometry δ = 3/ gcd(p,3) = 1 and γ = gcd(3q + p,3q −
p) = 2, and, hence, from Eq. (14) we find that g(c)

1,2 = g1,2.
This equality of the coupling reciprocal vectors and their
geometric counterparts occurs whenever the real-space unit
cell is equal in area to the moiré unit cell; this occurs when (p =
1,q ∈ {odd integers}). We now consider a number of lattices
that have angles very close to that of the (p,q) = (1,5) case
but, necessarily, primitive cells containing a greatly increased
number of carbon atoms N and, therefore, reciprocal lattice
vectors g1,2 greatly decreased in magnitude from the (p,q) =
(1,5) case. This leads to a proliferation of SLG states that may,
in principle, be coupled by the interlayer interaction. In Fig. 4
we present density plots of |	G| that are obtained by fixing
k1 at the point labeled A is these figures and then allowing k2

to run over all k vectors in the rotated BZ such that k2 = k1 +
αg1 + βg2 (where as usual α,β represent integers); Eq. (9) is
then solved numerically to find |	G| for the given k2 − k1. In
this figure one can strikingly see that while the details of the
function |	G| are lattice dependent, there is the emergence of
a structure that is governed entirely by the coupling vectors
g(c)

1,2 and, hence, depends only on the rotation angle.

To relate this structure more closely to the g(c)
1,2 we present in

Fig. 5 |	G| plotted along the line sections marked AB in Fig. 4.
One observes, first, that |	G| is a complex function of k2 − k1

and differs markedly for different N generated by very similar
rotation angles. However, these line sections, as may be seen
from Fig. 5, all include k2 − k1 = n2g(c)

2 for n2 = {0,−1,−2}
and, as may be seen from the inset of Fig. 5, the 	G generated
by these k-vector differences are (i) identical for each N and
(ii) correspond to the minimum 	G on the line section. (The
small changes arise from the fact that the set of rotation angles
chosen are close but obviously not identical.) To investigate the
impact of this structure of |	G| on the electronic properties we
plot in Fig. 6 the interlayer matrix element |〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉|2

over the same line section. Evidently only those SLG states that
are connected by the coupling vectors assume a nonzero value,
as expected from the preceding discussion. In addition, one
notes that the interlayer matrix elements decay exponentially
with g(c)

2 , a consequence of the exponential decay of all
interlayer matrix elements with |	G|.

Finally, it is interesting to note that the only two ingredients
that have been used in this derivation are (i) misorientation
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FIG. 4. (Color online) Momentum-space counterpart to the real-space moiré lattice: density plot of the magnitude of the shift term |	G|
that determines the magnitude of interlayer matrix elements 〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉; only matrix elements for which |	G| < 4 assume a nonzero

value. See Fig. 3 and Sec. II for details. In these plots k1 is fixed to the point labeled A and all k2 that interact with k1 are shown (interaction
is allowed if the difference of these momenta are integer valued in terms of the bilayer reciprocal lattice vectors). Shown are results for a set
of very similar angles that, necessarily, correspond to very different real-space primitive cell sizes: N is the number of atoms in the primitive
cell. While details of |	G| evidently depend on details of the real-space primitive cell geometry, one observes an emergent structure that is
independent of N and depends only on the rotation angle θ through the coupling momentum scale g(c) = |g(c)

1,2|. The point labeled B describes

the line section on which |	G| and 〈φ(1)
i1k1

|VB |φ(2)
i2k2

〉 are plotted in Figs. 5 and 6, respectively.

of identical layers and (ii) a sufficiently fast decay of
the coefficients of the Fourier expansions. The theoretical
approach outlined above (and the numerical methods that
derive from it, as outlined in the subsequent section) are, thus,
more general than their specific application to the graphene
honeycomb lattice.

III. NUMERICAL METHOD

From the analysis of the previous section it is clear that,
when expressed in the SLG basis, the twist bilayer Hamiltonian
assumes a sparse structure. This is due to the fact that
(i) when k2 − k1 	= n1g(c)

1 + n2g(c)
2 the interlayer matrix el-

ement 〈φ(1)
i1k1

|VB |φ(2)
i2k2

〉 is negligible and (ii) such matrix ele-
ments decrease exponentially with n1,2. In addition, the layer
diagonal blocks are diagonal in state indices i1k1 and consist
simply of the single-layer graphene eigenvalues εi1k1 . This

follows as we have 〈φ(n)
i1k1

|VB |φ(n)
i2k2

〉 = εi1k1δi1k1,i2k2 due to the

orthogonality of SLG states and the fact that 〈φ(1)
i1k1

|V2|φ(1)
i2k2

〉 =
〈φ(2)

i1k1
|V1|φ(2)

i2k2
〉 = 0 as these terms correspond to three-center

hopping integrals that are identically zero in the tight-binding
method we deploy here (and are quite generally negligible).

This exceptionally sparse structure allows the deployment
of a Lanczos technique that greatly reduces the numerical
cost of diagonalization.18 This fact, however, is only partly
responsible for the efficiency of the algorithm we propose
here, and there are two further crucial points that account for
the numerical efficiency.

First, the calculation of matrix elements of the form
〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉 is, in the small-angle limit especially, numer-

ically rather expensive as it involves sums over the number
of carbon atoms N in the real-space primitive cell. However,
for any matrix element 〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉 we may determine the
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FIG. 5. (Color online) The shift term |	G| plotted on the line
section AB in the rotated Brillouin zone indicated in Fig. 4. The inset
shows the minimum values of |	G| that are given by Eqs. (12), (13),
and (14). These occur when the momentum difference between the
single-layer graphene states k2 − k1 takes on values of −n2g2 with
n2 = {0, − 1, − 2}; see also Fig. 4.

shift |	G| from Eq. (9), which may be numerically solved
for arbitrary k2 − k1 using the extended Euclid algorithm
as outlined in Appendix. As the extended Euclid algorithm
employs at most 5h integer algebra steps, where h is the
number of base-10 digits in the smaller of p and q (see Ref. 19),
the calculation of |	G| is of negligible cost in comparison
to the calculation of matrix elements. The twist bilayer
Hamiltonian thus may be very efficiently constructed with
recourse to Euclid’s algorithm; only those matrix elements
for which |	G| < 	Gmax are calculated. We find that to
accurately reproduce results for the exact tight-binding method
	Gmax = 3 is sufficient.

A second reason is that if we wish to evaluate the twist
bilayer electronic structure in some energy window (E1,E2),
we require only SLG eigenstates in a somewhat greater energy
window, which we find from numerical experience to be

FIG. 6. (Color online) The interlayer matrix element
|〈φ(1)

i1k1
|VB |φ(2)

i2k2
〉|2 averaged over the SLG graphene band index

(i1,i2 = 1,2) and plotted on the line section indicated in Fig. 4. Note
that only when the momentum difference of the SLG states, i.e.,
when the difference of the k-vector labels k2 − k1, is an integer
multiple of the coupling momenta g(c)

1,2 are the two states coupled by
the interlayer interaction. In the particular case shown this occurs
when k2 − k1 = −n2g2 and, hence, all points in the graph are
separated by g(c) = |g(c)

1,2|.

approximately given by (1.5E1,1.5E2). The underlying reason
for this is that the bilayer potential is rather weak; SLG
eigenstates very far in energy from the window of interest
are not coupled by this weak potential. As we are often only
interested in an energy window of a few electron volts about
the Dirac point, this allows for a substantial truncation of the
bilayer Hamiltonian when expressed in the SLG basis.

Properties such as the density of states and layer- or
site-projected density of states are then obtained from the
eigenvalues in a standard way (note that to obtain projections
one needs to transform the eigenstates from the SLG basis
back to a real-space basis). Using this approach (that we
estimate is of the order of 103 times faster than the standard
tight-binding method at small angles), we can completely
survey the electronic structure as a function of twist angle.

IV. RESULTS

Figures 7(a)–7(i) show the density of states (DOS) as a
function of angle, plotted in the energy range −3 to 2 eV.
Three salient features may be noted: (i) the SLG van Hove
singularity (vHS) at −2.2 eV is split into an increasing
number of distinct high-energy vHS’s as the twist angle is
reduced; (ii) the energy window between the low-energy
vHS’s, indicated by 	1 [see Fig. 7(b)], reduces as the twist
angle is reduced (this is the window in which decoupled SLG
cones may be found); nevertheless, (iii) in the small-angle

FIG. 7. (Color online) Total density of states (DOS) of the twist
bilayer for angles between 32.20◦ and 0.46◦ calculated using the
efficient tight-binding method described in the text. AA-DOS and
AB-DOS indicate the DOS projected onto these regions of the moiré
lattice (see Fig. 4 for illustration of the relation of these regions to
the bilayer unit cell); in panels (a)–(i) the dashed line indicates the
DOS of single-layer graphene. Note that panels (a)–(i) use the upper
energy scale, while panels (j)–(r) the lower energy scale.
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FIG. 8. (Color online) Dirac cone window 	1 (given by the
separation of the low-energy van Hove singularities), indicated
by large filled circles, and the high-energy van Hove singularity
separations 	2, indicated by small filled circles, plotted versus the
twist bilayer rotation angle θ . (Inset) The origin of multiple energy
scales in the density of states via the coupling of SLG states by a
single momentum scale; see text for details.

limit apart from the “smearing” of the −2.2 eV SLG vHS into
a multitude of peaks, and a residual structure near the Dirac
point, the low-angle-state density is almost coincident with
that of SLG. In summary, the development of the DOS with
angle can be understood as the “pushing” of an increasing
number of vHS peaks to either the energy of the SLG M point
vHS peak at −2.38 eV or to the Dirac point. As the twist
angle approaches zero these low-energy vHS separated by 	1

ultimately merge into a pronounced peak in the DOS centered
at zero energy, as shown in Figs. 7(j)–7(r). Note that at these
small angles [see Figs. 7(o)–7(r)] the DOS changes very little,
and so the system is approximately self-similar at these angles.
In approximate analytical theories, valid in the small-angle
regime, this low-energy peak in the DOS emerges as the zero
mode of a non-Abelian moiré potential;14 in the complete
picture presented here we see that it represents the low-energy
and low-angle limit of the vHS’s present at all angles.

The energy scales of the low- and high-energy vHS’s, 	1

and 	2 respectively [see Figs. 7(b) and 7(f)], clearly show

a different but, for θ < 15◦, linear dependence on θ (see
Fig. 8). In fact, this result follows directly from the existence
of a universal momentum scale g(c) by which SLG eigen-
states couple: we have 	1 = v(ε = 0 eV)g(c) and 	2 = v(ε =
−2.38 eV)g(c) with v(ε) the band velocity at energy ε. This
is illustrated in the inset of Fig. 8. In this case, we expect the
ratio 	1/	2 to match the ratio of the band velocities and indeed
numerically this is the case: v(0.00eV)/v(−2.38eV) = 0.236
and 	1/	2 = 0.243. Note that the linearity of 	1,2 follows
from the small-angle expansion of the sin(θ/2) in g(c). A close
inspection of 	1 in Fig. 8 shows that the “best fit” line appears
not to intercept the origin, in contrast to best fit line through the
	2 results. The origin of this behavior is the fact that at ≈2◦
the two peaks that constitute the end points of the energy sep-
aration 	1 merge into the single zero mode peak, as shown in
Figs. 7(j)–7(l). This contrasts with high-energy van Hove sin-
gularities which do not appear to form a single peak as θ → 0
but instead a “van Hove comb” of singularities [see Fig. 7(i)].

So far we have considered only the DOS, and we now
turn to the nature of the twist bilayer wave functions, and
in particular how they differ from SLG wave functions. We
shall consider in detail the bilayer system with θ = 0.46◦ [in
Fig. 7(r)], but similar results are found for any small-angle case.
In Figs. 9(a) and 9(b) is shown |�(r)|2 integrated over all states
in the low-energy peak and the first negative energy satellite,
respectively. In the former case we see clear localization on the
AA regions of the moiré, while in contrast states in the satellite
are entirely expelled from the AB region. In both cases we see
a strong localization that can clearly be connected to the moiré
geometry (see also Ref. 7). This low-energy localization has
been noted in a number of recent works,7,16 and in particular
in Ref. 16 it was shown by calculation of graphene twist flakes
that a single moiré unit cell is sufficient to cause low-energy
localization of the quasiparticles. Such behavior is reminiscent
of localization by a “moiré quantum well.”

Turning to states at energies far from the Dirac point, we
find two quite distinct classes of twist bilayer wave functions:
states with an irregular localized appearance, as shown in
Fig. 9(c), and SLG type states, see Fig. 9(d) for a representative
example; the corresponding eigenvalues are ε = −0.503 eV

FIG. 9. (Color online) ρ(r) = ∑
i |�i(r)|2 where i runs over all states in the zero-energy peak in the DOS shown in panel R of Fig. 7 [panel

(a)] and over all states in the first neighboring negative energy peak [panel (b)]. Dashed lines indicate twist bilayer unit cell, circles [panels (a) and
(b)] indicate regions of AA and AB stacking. Panels (c) and (d) show |�i(r)|2 plotted for two eigenstates of energy −0.503 eV and −0.512 eV
respectively; the panels on the right-hand side (e) and (f) show the spectrum projected onto the complete set of SLG states. Note that ρ(r) and
|�i(r)|2 are shown only in layer 1; results for layer 2 are similar. Panel (g) displays the average SLG purity of the twist bilayer system as a function
of rotation angle. As the angle is lowered an increasing number of states are of type (e): localized and consisting of a mix of many SLG states.
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and ε = −0.512 eV, respectively. Projecting these states onto
the (complete) set of SLG eigenstate states that constitute the
basis in our calculations [see Fig. 9(e) and 9(f)], we find that
while the states of localized appearance result from the mixing
of many SLG states, the SLG type states are, as expected,
dominated by a SLG eigenstates from a single energy.

To quantify this degree of mixing of SLG states, that
evidently occurs at all energies, we define the SLG purity γik
of a given twist bilayer eigenstate as the sum of the maximum
weight of the contributing SLG eigenstates in each layer, i.e.,
γik = max{|〈φ(1)

i1k1
|�ik〉|2} + max{|〈φ(2)

i2k2
|�ik〉|2}. For the case

of the SLG type wave functions this number is evidently close
to 1, while for the states of localized appearance, as shown
in Fig. 9(c) and 9(e), this number is much smaller. We then
average γik over all states in the energy window [−0.65, 0.65]
eV to arrive at a measure of the mixing for a given twist bilayer
system. This is plotted in Fig. 9(g) as a function of rotation
angle. Clearly, while for θ > 15◦ almost all states are SLG
type, indicating that the layers are genuinely decoupled, as
θ → 0 and, hence, as the coupling scale g(c) → 0, an increas-
ing number of SLG states are coupled and thus mix, with the
consequence of increasing appearance of localization at all
energies. This “mixing out” of the SLG states we believe is
the origin of the “missing” (i.e., non current-carrying) states in
recent quantum Hall measurements;15 the regular nature of the
decrease in SLG purity suggests the number of such missing
states could provide a reliable measure of the rotation angle.

V. CONCLUSIONS

To conclude we have shown that the graphene twist bilayer
is characterized by an emergent momentum scale g(c) leading
to effective reciprocal lattice vectors and Brillouin zone, in
general differing from the geometric reciprocal lattice vectors
and Brillouin zone. In the small-angle limit these are just the
reciprocal lattice vectors corresponding to the real-space moiré
geometry, although they determine the coupling of states at
all angles. We stress that this momentum scale requires no
approximation, such as a continuum approximation, in its
derivation. This insight leads to a numerical approach that
we find to be, in the small-angle regime, several orders of
magnitude faster than a direct tight binding approach but with
no loss of accuracy. The efficiency of this method is based
on (i) the fact that the twist bilayer Hamiltonian takes on
an exceptionally sparse structure when expressed in a basis of
single-layer graphene states (at θ = 2◦ only 10−4 of the matrix
elements are typically nonzero) and (ii) the solution of a trivial
Diophantine problem (Bézout’s identity) allows one to know
which matrix elements assume nonzero value.

With this method we have explored the electronic structure
of the twist bilayer as a function of angle, in particular
focusing on the density of states and bilayer wave functions.
We find a series of both high-energy and low-energy van
Hove singularities that, however, are governed by the same
underlying momentum scale, g(c). The small-angle limit of the
twist bilayer is characterized by an increasing number of states
being composed of multiple single-layer graphene states, as
opposed to the large-angle limit when the twist bilayer wave
functions are essentially pure SLG states. Such interference of
multiple SLG states leads to the appearance of localization of

the twist bilayer wave function in real space. Interestingly, the
fact that the coupling of SLG states on the momentum scale g(c)

plays a critical role in the physics described here implies that
manipulating the position of the Dirac cones, as is easy to do by
use of an external field, will allow both the Van Hove singular-
ities and state localization to be tuned by such external fields.

In summary, we have presented a complete survey of the
twist bilayer system, made possible by a numerical method
equivalent to, but several orders of magnitude faster than,
standard tight-binding calculations and based on the physical
insight of an angle-dependent momentum scale in this system.
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APPENDIX: NUMERICAL SOLUTION OF INTERLAYER
MOMENTUM CONSERVATION EQUATION

In this Appendix we shall prove that the equation for the
interlayer momentum conservation in the twist bilayer, namely

G1 = RG2 + (k2 − k1), (A1)

has a lattice of solutions that for all (k2 − k1) are the given
by the same reciprocal space commensuration lattice but with
different shifts off the origin 	G. Furthermore, we present a
numerical method that yields solutions of Eq. (A1) for any
(k2 − k1). In Ref. 5 analytical solutions to this equation for a
restricted set of (k2 − k1) were obtained, and our method here
follows closely that used to find these analytical solutions.

Equation (A1) may be visualized as the set of coincident
points between two periodic lattices: the reciprocal lattice of
single-layer graphene, G1 = m1b1 + m2b2, and the recipro-
cal lattice of a rotated single-layer graphene layer, RG2 =
n1Rb1 + n2Rb2, but with an additional shift given by k2 − k1.
See Fig. 1 for an illustration of this. Intuitively, then, if there
are solutions at all to Eq. (A1), then these will be of the form
of an infinite lattice of solutions {G1}.

We first express all the objects in Eq. (A1) in coordinates
of the reciprocal lattice of unrotated graphene (we shall refer
to this as the U coordinate system) and to this end write G1 =
m1b1 + m2b2 and G2 = n1b1 + n2b2, with b1,2 the reciprocal
lattice vectors of the unrotated graphene lattice. Due to the
folding back procedure, see Sec. II, the shift term must always
be integer valued in terms of the reciprocal lattice vectors of
twist bilayer graphene, and it is thus convenient to express this
term as k2 − k1 = l1g1 + l2g2, where g1,2 are the reciprocal
lattice vectors of the twist bilayer, defined in Eqs. (6) and
(7), and l1,2 are integers. To complete our goal we require
that the (right-handed) rotation operator R is expressed in U

coordinates and further require a transformation to take the
shift term (l1,l2) to U coordinates. For the rotation operator
we find

R = 1

i3

(
i2 + i1 −2i1

2i1 i2 − i1

)
, (A2)
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and for the transformation from bilayer to unrotated reciprocal
lattice coordinates

TBU = γ

i3

(−p + q −2q

2q −p − q

)
(A3)

for the case in which δ = 3/ gcd(p,3) = 3. We will treat only
this case explicitly here; the corresponding derivation for δ = 1
proceeds in an entirely analogous manner. In Eqs. (A2) and
(A3) (p,q) are a (co-prime) integer pair that label the real-space
commensuration, and i1,2,3 are defined by

i1 = 2pq, i2 = 3q2 − p2, i3 = 3q2 + p2. (A4)

For details on the derivation of the rotation operator R in U

coordinates we refer the reader to Ref. 5, while TBU may
be obtained directly from the twist bilayer reciprocal lattice
vectors g1,2. With these results we are now in a position to
write Eq. (A1) in U coordinates and find(

m1

m2

)
= 1

i3

(
i2 + i1 −2i1

2i1 i2 − i1

)(
n1

n2

)

+ γ

i3

(−p + q −2q

2q −p − q

)(
l1

l2

)
. (A5)

Noting that both the rotation operator R and the transformation
TBU may be simultaneously diagonalized, we find that Eq. (A5)
may be brought to the form

(m2 + n2)p = (n3 − m3)q − γ l2
(A6)

(n3 + m3)p = (m2 − n2)3q − γ (2l1 − l2),

where we have introduced n3 = 2n1 − n2 and m3 = 2m1 −
m2. To arrive at this result we diagonalize Eq. (A5) and equate
the real and imaginary parts of the resulting formula. We
now introduce, without change, two further integers a1,2 into
Eq. (A6):

(m2 + n2 − a1)p = (n3 − m3)q − a1p − γ l2
(A7)

(n3 + m3 − a2)p = (m2 − n2)3q − a2p − γ (2l1 − l2).

If we now suppose that there exist b1,2 such that

−b1q − a1p = −γ l2
(A8)

−b23q − a2p = −γ (2l1 − l2),

we then find that Eq. (A7) takes the form of a homogeneous
Diophantine problem for (p,q)

(m2 + n2 − a1)p = (n3 − m3 − b1)q
(A9)

(n2 + m3 − a2)p = (m2 − n2 − b2)3q.

This equation may evidently solved by setting (m2 + n2 −
a1) = sq, (n3 − m3 − b1) = sp, (n2 + m3 − a2) = 3tq, and
(m2 − n2 − b2) = tp where s,t are integers and then solving
to find m1,2 and n1,2. After some algebra we find for m1,2(

m1

m2

)
= α

1

γ

(−p + q

2q

)
+ β

1

γ

(
2q

p + q

)

+ 1

4

[
a1 + a2 − b1 + b2

2(a1 + b2)

]
, (A10)

where α,β are arbitrary integers and the parameter γ =
gcd(3q + q,3q − p) is introduced to ensure that noninteger
α,β cannot yield integer m1,2.5 We thus see that the solutions
of Eq. (A1) are given by a lattice of points for which the
primitive vectors are (−p + q)/γ b1 + 2q/γ b2 and 2q/γ b1 +
(p + q)/γ b2. As these primitive vectors are independent of
l1,2, and, thus, independent of k2 − k1, we see that for all
k2 − k1 the solutions of Eq. (A1) describe the same lattice of
solutions, but with a shift off the origin given by the last term
in Eq. (A10). This is what we wished to prove.

All that now remains is to find a numerical solution this shift
term, i.e., for a1,2 and b1,2. This may be achieved by noting that
Eq. (A8) represents two separate linear Diophantine problems
for which the solution can easily be found numerically. We
recall that the linear Diophantine problem ax + by = c (also
known as Bézout’s identity), where a, b, and c are all integers
and we require integer solutions x and y, has (i) no solution
if gcd(a,b) is not a divisor of c and (ii) and infinite set of
solutions x = b/ gcd(a,b)k + x0 and y = −a/ gcd(a,b)j +
y0 if gcd(a,b) is a divisor of c. The values of x0,y0 cannot
generally be obtained analytically but may be found via the
extended Euclid algorithm.20 Using the fact that gcd(p,q) = 1
by construction, and that as δ = 3/ gcd(p,3) = 3, then 3 is not
a divisor of p and, thus, in addition, we have gcd(p,3q) = 1,
the solution to Eq. (A8) is

a1 = −qk + a
(0)
1 b1 = −pk + b

(0)
1

(A11)
a2 = −3qj + a

(0)
2 b2 = −pj + b

(0)
2 ,

where a
(0)
1,2 and b

(0)
1,2 must be obtained by the extended Euclid

algorithm and k,j are integers. From Eq. (A11) we find that

1

4

(
a1 + a2 − b1 + b2

2(a1 + b2)

)
= − 1

γ

(
k

12
+ j

4

)(−p + q

2q

)

− 1

γ

(
k

6

)(−p + q

2q

)

+ 1

4

(
a

(0)
1 + a

(0)
2 − b

(0)
1 + b

(0)
2

2
(
a

(0)
1 + b

(0)
2

)
)

(A12)

and so the terms depending on k,j lead only to the homoge-
neous part of Eq. (A10). The shift term 	G that we seek is,
thus, given by

	G = (
a

(0)
1 + a

(0)
2 − b

(0)
1 + b

(0)
2

)
b1 + 2

(
a

(0)
1 + b

(0)
2

)
b2.

(A13)

Finally, we note that there exists one circumstance in which
Eq. (A8) may be solved analytically: when l1,2 = 2p/γ n1,2

with the n1,2 integer. In this case, the terms on the right-hand
side may be absorbed into the prefactor of p on the left-hand
side, and the resulting pair of equations solved in exactly the
manner as in Eq. (A9). This approach leads to the analytical
results quoted in Sec. II and first derived in another way in
Ref. 5.
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