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We present a method for calculating the spectrum of periodic solids within reduced density matrix

functional theory. This method is validated by a detailed comparison of the angular momentum projected

spectral density with that of well-established many-body techniques, finding very good agreement in all

cases. The physics behind the pressure induced insulator-metal phase transition in MnO is investigated.

The driving mechanism of this transition is identified as increased crystal field splitting with pressure,

resulting in a charge redistribution between the Mn eg and t2g symmetry projected states.
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Transition metal oxides (TMOs), the prototypical Mott
insulators, are test-bed systems for new functionals within
density functional theory (DFT) and many-body theories
alike. Spectra at zero temperature and pressure obtained
from many-body theories are in good agreement with
experiments. Moreover, the spectral density obtained using
dynamical mean-field theory (DMFT) [1] and the G0W0

corrected DFT [2] agree with each other even for subtle
features such as symmetry and site projected spectral
density. Single particle DFT spectra can also be made to
agree with these many-body results by using two separate
fitting parameters: the on-site Coulomb term U and the
scissors shift �, where � is the difference between the
experimental gap and the Kohn-Sham gap obtained using
the local spin density approximationþU functional [2].

Away from the ground state, TMOs show the rich physics
of insulator-metal phase transitions. The classic Mott insu-
lator, MnO, exhibits metallization under pressure. This
phase transition is accompanied by a simultaneous moment
and volume collapse [3–8]. On the theory side, however, the
physics of this phase transition is totally different for differ-
ent methods; while DFT results indicate that the increase
in bandwidth controls the phase transition [9,10], DMFT
results, on the other hand, show that the main reason for
metallization lies in the increased crystal field splitting [1].

Recently, reduced density matrix functional theory
(RDMFT) has shown potential for correctly treating Mott
insulators under ambient conditions [11,12]. RDMFT is an
appealing alternative because it does not require any system
dependent parameters and thus is a truly ab initio theory for
treating strong correlations. However, it still remains to be
seen how RDMFT performs away from ambient pressure
conditions; can RDMFT capture the insulator-metal phase
transition? What is the physics of this phase transition
within RDMFT? In order to answer these questions one
requires two things: (1) a magnetic extension of RDMFT
and (2) information about the photoemission spectrum to
shed light on the nature of the phase transition. The latter

is a difficult quantity to extract from RDMFT, which, by its
very nature, is a ground-state theory.
In the present work we extend RDMFT to describe

magnetic solids and further present a technique for
calculating the photoemission spectrum. We validate this
technique by demonstrating the agreement of the t2g and eg
resolved spectral density thus obtained, with the well-
established many-body methods like GW and DMFT. We
further show that not only at ambient pressure but also
away from it RDMFT correctly determines the spectra of
Mott insulators and captures the physics of the insulator to
metal phase transition.
Within RDMFT, the one-body reduced density matrix

(1-RDM) is the basic variable [13,14]

�ðx;x0Þ �N
Z
d3x2 . . .d

3xN�ðx;x2 . . .xNÞ��ðx0;x2 . . .xNÞ;
(1)

where � denotes the many-body wave function, N is the
total number of electrons, and x � fr; �g. Diagonalization
of � produces a set of orthonormal Bloch functions, the so-
called natural orbitals [13] �ik, and occupation numbers
nik. In the present work we have extended RDMFT to the
truly noncollinear magnetic case by treating the natural
orbitals as two component Pauli spinors, leading to the

spectral representation: �ðx;x0Þ ¼ P
iknik’ikðrÞ � ’y

ikðr0Þ
with ’ikðrÞ � f�"

ikðrÞ; �#
ikðrÞg. The necessary and suffi-

cient conditions for ensemble N representability of � [15]
require 0 � nik � 1 for all i and k, and

P
iknik ¼ N.

In terms of �, the total ground-state energy [14] of the
interacting system is (atomic units are used throughout)

E½�� ¼ � 1

2
tr�

Z
lim
r!r0

r2
r�ðx;x0Þd3r0 þ
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where �ðrÞ ¼ tr��ðx;xÞ, Vext is a given external potential,
and Exc we call the exchange-correlation (xc) energy func-
tional. In principle, Gilbert’s [14] generalization of the
Hohenberg-Kohn theorem to the 1-RDM guarantees the
existence of a functional E½�� whose minimum, for fixed a
Vext, yields the exact � and the exact ground-state energy.
In practice, however, the correlation energy is an unknown
functional of � and needs to be approximated. While there
are several known approximations for the xc energy func-
tional, the most promising for extended systems is the
power functional [11] where the xc energy is given by
Exc½��¼�1=2

RR
d3x0d3xj��ðx;x0Þj2=jr�r0j with � indi-

cating the power in the operator sense. In view of the
universality of the functional Exc½��, the value of � should,
in principle, be system independent. A few optimum values
of � have been suggested in the literature [11,16,17]. In the
present work � is fixed to 0.656 for all materials studied.

In order to devise a theoretical method to approximately
obtain the spectral density we start from the definition of
the retarded Green’s function written in the basis of the
natural orbitals

iGR
��0 ðt� t0Þ ¼ �ðt� t0Þh�N

0 jfa�ðtÞ; ay�0 ðt0Þgj�N
0 i; (3)

where � � fi;kg with the index i labeling the natural
orbitals for a given k. a, ay are the creation and annihila-
tion operators associated with the complete set of natural
orbitals and j�N

0 i is the neutral N-electron ground state.

The spectral function A��0 ð!Þ can be written in terms of the
Lehmann representation as

A��0 ð!Þ ¼�2=GR
��0 ð!Þ

¼ 2�
X
j

h�N
0 ja�j�Nþ1

j ih�Nþ1
j jay

�0 j�N
0 i

��ð!�½ENþ1
j �EN

0 �Þþ2�
X
i

h�N
0 jay�0 j�N�1

i i

� h�N�1
i ja�j�N

0 i�ð!�½EN
0 �EN�1

i �Þ; (4)

where Hj�N�1
i i ¼ EN�1

i j�N�1
i i is satisfied by the exact

(N � 1)-particle eigenstates of the Hamiltonian H. To
deduce an approximate expression for the spectral function,
we replace the complete set of eigenfunctions fj�N�1

i ig by
the set of approximate eigenfunctions obtained by adding
(removing) a single electron in a natural orbital to (from)
the exact correlated N-particle ground state:

j�Nþ1
	 i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n	
p ay	 j�N

0 i;

j�N�1
	 i ¼ 1ffiffiffiffiffiffiffiffiffiðn
Þ

p a	 j�N
0 i:

(5)

While these many-body states are clearly not a complete
set, we do expect them to capture the dominant contribu-
tions to direct and inverse photoemission. The set fj�N�1

i ig
does not include (N � 1) states where in addition to adding
or removing an electron, other electrons are excited from

the ground state, i.e., terms involving more than one
creation or annihilation operator. Thus we do not expect
to be able to realistically describe quasiparticle weights,
lifetimes, or satellite features.
Replacing in Eq. (4) the complete set of exact eigen-

functions by this incomplete set of approximate eigenfunc-
tions [in Eq. (5)] and using the fact that the natural orbitals

diagonalize �, i.e., h�N
0 jay�0a	 j�N

0 i ¼ ��	n	 , we end up

with the following approximation for the spectral function:

A��0 ð!Þ ¼ 2����0 ½n��ð!� ��� Þ þ ð1� n�Þ�ð!þ �þ� Þ�;
(6)

with ��� ¼ EN
0 � EN�1

� . We note that in spite of being

approximate, the spectral function in Eq. (6) satisfies the
exact sum rule, 1

2�

R1
1A��0 ð!Þd!¼1. Being, as function of

!, a single � function for each fixed � ¼ ði;kÞ, the spectral
function in Eq. (6) is reminiscent of a noninteracting mean-
field type approximation. We emphasize that our approxi-
mation is by no means mean field because the (N � 1)
states in Eq. (5) are correlated and may even be strongly
correlated if, for example, j�N

0 i represents the ground state
of a Mott insulator.
It is a formidable task to determine quasiparticle life-

times within the Lehmann representation: one needs to
determine the position of an infinite number of peaks
corresponding to an infinite number of N � 1 eigenstates
in Eq. (4). This coalescence of peaks is described by an
envelope function the width of which is proportional to
the inverse quasiparticle lifetime. In order to determine
these lifetimes within the present formalism, one may
use the more general form of the N � 1 states known
from the extended Koopmans’ theorem [18], j�N�1

j i ¼P
��

�
j�j�N�1

� i, where j�N�1
� i are given by Eq. (5). This

yields for the diagonal of the spectral function, A��ð!Þ ¼
2�½n�W�

� ð!Þ þ ð1� n�ÞWþ
� ð!Þ� with W�

� ð!Þ ¼P
jj��

j�j2�ð!� ½EN
0 � EN�1

j �Þ, which has a finite width

possibly allowing us to determine the quasiparticle life-
times. Such investigation will be left to the future. Within
this article we wish to focus on the so-called density of
states, which is obtained by taking the trace of the spectral
function (

P
�A��):

DOS¼ 2�
X
�

½n��ð!� ��� Þ þ ð1� n�Þ�ð!þ �þ� Þ�: (7)

Now what remains is to calculate the excitation energies
��� ¼ ��ik ¼ EN

0 � EN�1
ik , where EN�1

ik is the energy of the

system with an electron, with specific momentum k, added
or removed.While in experimentsEN�1

ik represents the total

energy of a macroscopic block of material, in the theore-
tical description EN�1

ik is the total energy of a large but

periodically repeated Born–von Karman (BvK) cell, where
a constant charge background is added to keep the total
(infinite) system charge neutral. This would require a pro-
hibitively large number of total-energy calculations-equal
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to the number of k points times the number of natural
orbitals (typically 	2500). This is a formidable task and
hence we make another simplification which is not con-
ceptual in nature but rather a numerical trick similar to the
Slater transition state procedure [19]; we first introduce the

total ground-state energy,E
N�

ik , where a fractional number

of particles, 
, has been added or removed at a given ik.
We then assume that upon adding or removing charge to ik
the only occupation number that changes significantly is
the one that corresponds to the very same ik while all the
other occupation numbers as well as the natural orbitals
remain unchanged. With this simplification, following
Slater [19], the ��, can be approximated as

��ik ¼ @EN�

ik

@


��������
¼1=2
¼ @E½f�g; fng�

@nik

��������nik¼1=2

: (8)

This simplification can be easily numerically validated by
plotting the total energy as a function of nik; we find a
nearly linear behavior for all the materials studied here.
This implies that the Slater-type evaluation of the total-
energy difference in Eq. (8) is rather accurate.

Following the above procedure the spectral density for
the strongly correlated Mott insulators NiO, CoO, FeO,
and MnO is calculated using the full-potential linearized
augmented plane wave (FP-LAPW) code Elk [20], with
practical details of the calculations following the scheme
described in Ref. [11].

It is immediately apparent from Fig. 1 that RDMFT
captures the essence of Mott-Hubbard physics: all the
TMOs considered are insulating in nature. This fact was
already noticed in the previous work [11] where the pres-
ence of a gap without any spin order was deduced via a
very different technique, namely the discontinuity in the

chemical potential as a function of the particle number. A
closer examination of the spectra for NiO, CoO, and MnO
reveals a good agreement between the RDMFT peaks
and the corresponding x-ray photoemission spectroscopy
(XPS) and bremsstrahlung isochromat spectroscopy (BIS)
data. In fact, not only the peak positions, but also their
relative weights are well reproduced. For the case of FeO, it
must be recalled that Fe segregation, unavoidable in this
compound, precludes the experimental realization of pure
FeO samples. For this reason the only existing experimen-
tal data are rather old and the presumably substantially
contaminated and broadened data present no distinct
features that may be used for a clear comparison.
The actual values of the insulating gaps that may be

extracted from Fig. 1 are 4.5(4.3) eV, 2.6(2.8) eV, 3.2
(3.6) eV, 3.5 eV for NiO, CoO, MnO, and FeO, respec-
tively, with the corresponding experimental gap given in
parentheses. The value of the local moments we find to be
1:36ð1:9Þ�B, 2:7ð3:3Þ�B, 3:35ð3:62Þ�B, and 3:38ð4:7Þ�B

for NiO, CoO, FeO, and MnO, respectively, again with the
experimental values in parentheses. There are two reasons
for the smaller values of the magnetic moment within
RDMFT compared to experiment. First, the calculations
are performed with the FP-LAPW method in which space
is divided into spheres around the atoms, the so-called
muffin tins, and the interstitial region. In the case of fully
noncollinear magnetic calculations the magnetic moment
per site is calculated by integrating the magnetization
vector field inside the muffin tin. This means a small part
of the moment is lost in the interstitial. Second, the power
functional induces a slight noncollinearity in the magneti-
zation leading to yet more loss in the z-projected moment.
In Fig. 1 we also present the site and angular momentum

projected spectral density for the TMOs considered in this
work. The electronic gap, as expected, always occurs
between lower and upper Hubbard bands dominated by
transition metal d states. However, while for NiO one finds
a significant component of oxygen-p states in the lower
Hubbard band, for the other TMOs this hybridization
between oxygen-p and TM-d states reduces, and is almost
absent, in the case of MnO, indicating that for this material
the insulating state is driven mostly by Mott-Hubbard
correlations. As a validation of our method for the calcu-
lation of spectra we may compare these features of the
projected spectral density, and in particular the ordering in
energy of the t2g and eg states, withwell-established ab initio

many-body techniques such as DMFT and the GW method
[1,2]. In all cases we find a very good agreement, signaling
that the method we present here yields an accurate descrip-
tion of the detailed features of the spectral density.
Theoretical methods used to study TMOs at zero tem-

perature and pressure agree with each other as far as the
spectral density of TMOs is concerned [1,2,10,21]; how-
ever, the actual values of the gap and the moment differ
depending upon the details of the calculations. However,
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FIG. 1 (color online). Density of states for the TMOs in the
presence of antiferromagnetic order. Site and angular momentum
projected spectral density are also presented for transition metal
eg and t2g states and oxygen-p states. In addition, XPS and

BIS spectra (shifted up for clarity) are presented for comparison
[22–26]. Again, � ¼ 0:656 for all materials.
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this agreement between various methods ends at ambient
conditions, in that when attempting to study pressure in-
duced insulator-metal phase transitions (IMT) the results
vary wildly depending on the method. In MnO, experimen-
tal data point toward a first order IMT which is accom-
panied by a reduced volume (v=v0 ¼ 0:68 to 0.63) and
moment collapse (5 to 1�B) [3]. DFT with local density
approximation/generalized gradient approximation (LDA/
GGA)-like functionals captures this collapse of volume
and magnetic moment and shows that the physics behind
this phase transition is the simple widening of the Mn d
states due to increased itinerancy of the electrons at the
reduced volume [9,10]. On the other hand, DMFT shows
that the phase transition occurs as a result of the increased
crystal field splitting with the width of the Mn d states
unchanged [1]. The picture obtained with correlated band
theories is even more complicated: LDAþU shows a
moment collapse but no IMT [21], hybrid functionals yield
a phase transition to a semimetalic state [21], and finally
the self-interaction corrected DFT shows a transition to a
metallic state with unusually large d-band width [21].

Given this wide spread of results, in the present work
we study insulator to metal phase transitions using
RDMFT to shed light on this controversy. RDMFT is
an ideal method for doing so as it is an ab initio theory
for treating strongly correlated systems not requiring any
adjustable system dependent parameters. The results,
obtained using RDMFT, for the magnetic moment in
MnO under applied pressure are shown in Fig. 2. It is clear
that the magnetic moment collapses from 3:6�B at optimal
volume to 0:54�B at a reduced volume. Further reduction
of the volume does not change the moment. Within
RDMFTwe find a volume collapse of 11%, which is higher
than the experimental value of 6.6%. In order to investigate
the prime reason behind this moment collapse we plot
in Fig. 2 the number of electrons in the Mn d states as
a function of volume. One notices a redistribution of

electrons among the symmetry projected t2g and eg states.

At the reduced volume of 0.8 the number of eg electrons

(neg) starts to reduce, finally leveling off at v=v0 ¼ 0:711.

This is accompanied by an increase in the t2g state charge

(nt2g). This picture is fully concomitant with the previous

results obtained using DMFT [1]. In order to look at the
detailed behavior of these t2g and eg states we have also

plotted them as a function of volume in Fig. 3. The eg states

move above the chemical potential as the volume is
reduced, while the t2g states move below, finally ending

up with a totally different spectral density in the metallic
phase as compared to the Mott insulating phase. As a result
of this rearrangement the crystal field splitting between the
t2g and eg states increases. Despite RDMFT being a totally

different approach as compared to DMFT, the symmetry
projected spectral density as a function of volume looks
very similar for the two methods (see Fig. 3 of Ref. [1]).
However, there exists a striking difference between the two
in that within RDMFT the Mn d states widen at reduced
volume as compared to those at v=v0 ¼ 1. This increase in
the bandwidth has its origin in a small shift in the spectral
weight of the lower Hubbard band to lower energy. A close
inspection of Fig. 3 shows that the change in crystal field
splitting is very large (	 4:4 eV) and certainly has a
prominent role in the IMT in MnO. Band widening is a
coexisting phenomenon that has a very small influence on
the IMT. This band widening on the other hand drives the
IMT if LDA/GGA functionals with DFT are used.
To conclude, we have presented a method to calculate

photoelectron spectra within the framework of RDMFT.
We have shown that the spectral information obtained in
this way gives a detailed account of the strongly correlated
nature of the TMOs, including the subtle interplay between
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FIG. 2. Left panel: on-site magnetic moment (in �B) for MnO
as a function of reduced volume (v=v0). Right panel: Mn d-band
occupancy resolved into eg and t2g components.
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Mott-Hubbard correlation and charge-transfer character in
these materials. We validate this method not only by show-
ing a good agreement of gross spectral features with
experiments, but also by a detailed comparison of the
angular momentum projected spectral density with that
of well-established many-body techniques, in all cases
finding a very good agreement. We have further elucidated
the physics behind the insulator to metal phase transition in
MnO using RDMFT. For MnO the pressure induced phase
transition is caused by the increase in crystal field splitting,
which in turn is the result of a redistribution of charge
among the states with t2g and eg symmetry. The widening

of the transition metal d band is seen as a coexisting
phenomenon but is certainly not the reason for the
metallization.
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