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Abstract. Atomic-scale simulations are performed to study the vertical
manipulation of single Co adatoms on a Cu(001) surface using a scanning
tunneling microscopy (STM) tip. Cu and Co tips with different geometries are
investigated. Our results demonstrate that the details of the tip significantly affect
the manipulation of the Co adatom. The differences in the manipulation of the
Co adatom using different tips and the dependence on tip geometry are revealed.
The possibilities and mechanism of extracting single adatoms on metal surfaces
with a STM tip at zero bias voltage are explored.
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1. Introduction

Since the first successful manipulation of Xe atoms on a Ni(110) surface with a scanning
tunneling microscopy (STM) tip by Eigler and Schweizer [1], atomic manipulation has opened
up possibilities of designing man-made nanostructures on the atomic scale. The activation
barrier of adatoms on metal surfaces or clusters can be reduced and atomic motion can
1 Author to whom any correspondence should be addressed.
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be controlled in the presence of the tip [2]–[4]. Using the STM tip, one can construct
low-dimensional nanostructures such as nanowires [5], quantum corrals [6] and electron
resonators [7], etc. The STM manipulation can be performed by precisely controlling tip–sample
interactions [8] and by applying an electric field between the tip and the sample [9].

Atomic manipulation usually includes two processes: lateral manipulation (LM) and
vertical manipulation (VM). One can perform these two processes separately or combine
them for different purposes. In a LM process, the minimum tip–atom distance required for a
manipulation can be determined by measuring the threshold tunneling current to move an atom
at a fixed bias [10]. The mechanism of atomic motion in a LM process has been demonstrated
by Bartels et al [11]. Three modes, ‘pulling’, ‘sliding’ and ‘pushing’, are discerned [12, 13].
Pulling and sliding are usually applied in the manipulation of metal atoms [14], whereas organic
molecules are mostly pushed on flat or stepped surfaces [15, 16] and sometimes pulled on
semiconductor surfaces [17]. VM involves atomic transfer between the tip and the surface,
which can be achieved by using an electric field or by direct tip–adatom contact [18]. VM
towards the tip is difficult to control because the barrier vertically withdrawing an individual
adsorbate off a surface is generally larger than that for LM [14]. Multiple excitation of
adsorbate–substrate vibrational mode through inelastic electron effects in the presence of an
electric field can be used to explain the mechanisms of VM [19].

It has been demonstrated that the VM of individual metal atoms from a metal surface
or a molecule from a semiconductor surface can be achieved using a STM tip at zero bias
voltage [20, 21]. In fact, experimental investigations show that it is not necessary to successfully
extract atoms or molecules from the surface by applying an electric field between the tip
and the sample [22]. Applied electric field might destroy the structure of adsorbed atoms or
molecules [23].

It is found that atom manipulation is usually influenced by the details of the tip [15, 17],
[24]–[27]. Ghosh et al [24] have revealed that a blunt tip is more effective than a sharp tip in the
LM and VM of adatoms. Activation barrier of adsorbates on metal surfaces can be lowered much
more effectively by using a blunt tip rather than a sharp one. The lowering of the barrier is also
found to depend on the tip composition. A Cu tip is more effective in lowering the barrier of a Pt
atom on a Pt surface as compared to a Pt tip [25]. Bouju et al [26] have found that the dragging
mechanism for a Xe adsorbate on a Cu(110) surface depends on tip geometry. Yildirim et al [27]
have shown that the extraction mode of a Ag adatom from a mound depends on tip geometry
and composition. Very recently, the effect of tip structure and position on the manipulation has
also been found for pushing and pulling a C60 molecule on a Si(001) surface [15, 17].

In this paper, we present our results for the manipulation of single Co adatoms on a Cu(001)
surface using Cu or Co tips. By performing atomic scale simulations, we reveal the influence of
tip geometry and composition on the manipulation. The possibilities and mechanism of the VM
of single magnetic adatoms on metal surfaces with a STM tip at zero bias voltage are explored.

2. Computational methods and models

In this work, atomic scale simulations are performed using the molecular statics (MS) method
with ab initio based many body potentials [28]. This approach is based on fitting of many-
body potentials to accurate ab initio data for surface and bulk properties. First, using the
Korringa–Kohn–Rostoker (KKR) Green’s function method [29], we construct an ab initio data
pool by calculating surface and bulk properties. Then many body potentials based on the second
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moment approximation of the tight binding theory [30] are fitted to this ab initio data. Recent
studies [31]–[37] have shown that this method describes atomic relaxations in nanostructures in
very good agreement with fully ab initio calculations. It is demonstrated that this method can
be successfully used to investigate the structure, electronic and magnetic properties of a single
atom magnetic junction [38]. The technical details and parameters of interatomic potentials can
be found in our previous works [28, 30, 37].

The Cu(001) substrate is mimicked by a seven-layer thick slab with 512 atoms per layer.
Periodic boundary conditions are applied along the directions parallel to the surface and no
such constraint is imposed along the direction normal to the surface. We model the tip by a
Cu or Co pyramid of three layers arranged in fcc(001) stacking. The two bottom layers in the
substrate and the topmost layer of the tip are fixed in each relaxation in order to keep their
bulk properties. Fully relaxed calculations are performed at each step when approaching the tip
towards the surface.

3. Results and discussions

Let us first consider a blunt Cu29 tip to be positioned above a Co adatom on a Cu(001) surface.
There are four atoms at the apex for this tip (see figure 1). We approach the tip towards the
surface vertically with a step of 0.1 Å. When the distance between the tip and the substrate
reduces, both the tip-bottom atoms and the adatom exhibit strong vertical displacements. A big
atomic relaxation also occurs in the substrate underneath the adatom (see figure 1). However,
during the manipulation we notice that a sudden jump of the adatom to the tip takes place
when the tip–substrate distance is about 8.0 Å. Here, the tip–substrate distance is defined as the
distance from the topmost layer of the tip to the surface layer of the substrate.

We find that atomic relaxations have already happened before the sudden jump of the Co
adatom towards the tip. Thus, the sudden jump does not mean the starting point of chemical
interaction between the tip and the adatom. In order to understand this phenomenon, we retract
the tip from a shorter (6.9 Å) to a longer (8.9 Å) tip–substrate distance. We find that the tip-
bottom atoms and the adatom go through different paths when the tip–substrate distance is
beyond 8.0 Å (see figure 1). Four Co–Cu bonds near the surface are broken, whereas another
four Co–Cu bonds near the tip are formed. The adatom initially staying at the surface follows
the tip and stays with the tip when retracting the tip from the surface. This means that adatom
transfer happens from the substrate to the tip and this process is irreversible. This is significantly
different from the case using a sharp Cu14 tip (there is one atom at the apex for a sharp Cu14

tip; see figure 3(a)), where the adatom cannot be extracted from the surface by the tip and the
manipulation is reversible when approaching and retracting the tip [38].

If we use a sharp Co14 tip and do the same thing as with the Cu tips, we find that one
can extract a Co adatom from the substrate using this tip. This can be attributed to the stronger
interaction between Co atoms as compared with the Co–Cu interaction. Using a blunt Co29 tip,
one can also extract a Co adatom. But some details are different. For the junction with the Co29

tip, it is found that only the Co adatom goes through different paths when the tip–substrate
distance is beyond 8.4 Å (see figure 2). The tip-bottom atoms and the substrate atoms have
almost the same paths when one approaches the tip to the surface and then retracts it. This
means that the Co adatom attached to the Co tip does not induce so strong relaxations in the Co
tip as that in the Cu tip. Our study finds that the tip length for the Co29 tip (3.25 Å) is shorter
than that for the Cu29 tip (3.32 Å) at very large tip–substrate separation (without the tip–adatom
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Figure 1. One-atom magnetic junction consisting of a Cu29 tip, Co adatom
and Cu(001) substrate. The tip is above the adatom. With the decrease of the
tip–substrate distance, both the tip-apex and the adatom exhibit strong vertical
displacements. A large atomic relaxation also occurs in the substrate underneath
the adatom. In this figure, 1l = l0 − l is the change of the tip length, where l and
l0 are the tip lengths with and without tip–adatom interaction; 1z and 1d are the
displacements of the adatom and the substrate atom C along the z-axis, where z0

is the relaxed adatom–substrate distance without tip–adatom interaction; h is the
tip–substrate distance, which is defined as the distance from topmost layer of the
tip to the Cu(001) surface.

interaction). The relaxation in the Co29 tip is larger than that in the Cu29 tip in the absence of
tip–adatom interaction. Accordingly, the ability for further relaxation for the Co29 tip is smaller
than that for Cu29 tip when the adatom is attached to the tip. It should be mentioned for blunt Co
tips that the migration of the Co adatom along the apex layer and the aggregation of Co adatoms
onto the tip might take place after the VM [39, 40], which should be paid much attention during
the precise manipulation of atoms and molecules using a STM tip.

Why does atom transfer take place when using a blunt Cu29 tip? To answer this question,
we have calculated the potential energy curves of a Co adatom positioned between the tip
and the Cu(001) substrate for both sharp and blunt Cu tips at different tip–substrate distances
(see figure 3). This can be done by calculating the minimum energy of the tip–adatom-surface
junction for a given tip–substrate distance as a function of adatom altitude. It is revealed that,
at a large tip–substrate distance, the Co adatom has two possible stable positions, one at the
surface and the other at the tip. Each energy minimum is represented by a potential well and
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Figure 2. One-atom magnetic junction consisting of a Co29 tip, Co adatom and
Cu(001) substrate. The tip is above the adatom. Large atomic relaxations take
place in the junction when approaching the tip towards the surface. The meaning
of the symbols in this figure is the same as in figure 1.

the two potential wells are separated by an energy barrier between them. Figure 3(b) shows
that the potential well close to the Cu29 tip is lower than that near the Cu(001) surface for the
tip–substrate distances, where the junction has two potential wells. For example, the energy
difference between these two wells is about 15 meV at a tip–substrate distance of 8.9 Å. This
means that the adatom tends to stay with the Cu tip rather than at the surface. If we use a sharp
Cu14 tip (see figure 3(a)), the adatom cannot be picked up from the surface. Our studies find that
the minimum potential well is at the surface side in this case. Thus, one is more likely to pick
up the adatom from the surface with a Cu tip by changing the shape of the tip from a sharp Cu14

to a blunt Cu29 tip. This might also be a way to fabricate a sharp tip by extracting an adatom
from a surface using a blunt tip if one wants to enhance the STM image resolution [14, 41]. It
is also shown in figure 3 that the barrier for a Co adatom to go from the surface site to the tip
site or from the tip site to the surface site can be reduced and the double potential well becomes
a single potential well by decreasing the tip–substrate distance.

We have also calculated the energy difference between two potential wells as a function
of the tip–substrate distance for both junctions with the Cu29 and Co29 tip, which is shown in
figure 4. It is found that the energy difference changes sharply when the tip–substrate distance
is beyond a certain tip–substrate distance. The energy difference increases with increasing
tip–substrate distance for the junction with the Co29 tip, whereas it decreases with increasing
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tip–substrate distance for the junction with the Cu29 tip. It can also be noted that the sign of the
energy difference is independent of the tip–substrate distance for these two junctions when they
have two potential wells. If we increase the size of the tip-apex layer, we find that the situation
becomes more complicated. For example, one can still extract the adatom from the surface using
a blunt Co77, tip, whereas one cannot do it anymore using a blunt Cu77 tip.

Where does the difference come from? Firstly, let us consider the atomic stress acting on
the Co adatom for the junctions containing Cu29, Cu77, Co29 and Co77 tips. The atomic level
stress components [42] can be calculated as follows:

σαβ(i) = −
1

�0

[
pα

i pβ

i

mi
+ 1

4

∑
j
(rβ

i j f α
i j + rα

i j f β

i j )

]
, (1)

where (αβ) ≡ (x, y, z), mi and Epi are the mass and momentum of atom i, Eri j means the distance
between atom i and atom j, and Ef i j is the force acting on atom i due to j; �0 defines the average
atomic volume. Figure 5 shows that breaking a Cu–Co or Co–Co bond is a process of stress
relief for all these blunt tips. One can also find that the stress relief is much larger for the tips
with a large tip-apex layer. This is easy to understand because the atoms in the large tip-apex
layer are constrained by many more nearest-neighbor atoms and thus find it difficult to relax
compared to those in the small tip-apex layer.

Secondly, by calculating the potential energy curves for the junction with the tip containing
16 or 36 atoms in the tip-apex layer, one can see that the minimum potential well for the junction
containing either a Co29 or Co77 tip is always at the surface side for the tip–substrate distances
where the system has two potential wells. But for the junction containing a blunt Cu tip, when
the tip size increases from Cu29 to Cu77, the minimum potential well shifts from the tip side to the
surface side. As an example, figure 6 shows the calculated energy difference at a tip–substrate
distance of 8.9 Å. For the junctions containing blunt Co tips, the energy difference is always
positive, which means that the Co adatom tends to stay with the Co tip. However, for the
junctions containing blunt Cu tips, when the tip size increases from a blunt Cu29 to Cu77 tip,
the energy difference changes its sign. The adatom still stays at the surface when using the Cu77

tip. This means that one can always extract the Co adatom from the Cu(001) surface using Co
tips. But for Cu tips, whether one can extract the Co adatom or not depends on the tip geometry.
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and the lower one is for Cu tips. The negative value means that the adatom is
more stable staying with the tip than it is staying with the surface in the junction,
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Why can this blunt Cu29 tip withdraw the adatom and the others not? If we compare a sharp
Cu14 tip with a blunt Cu29 tip (see figures 7(a) and (b)). It is easily understood that one Co–Cu
bond connecting the tip with the adatom cannot compete with four Co–Cu bonds connecting
the substrate with the adatom (see figure 7(a)). This is not the case if we compare a blunt Cu29

tip with other blunt Cu tips (see figures 7(b) and (c)). Both sides (one at the tip side and the
other at the surface side) have four Co–Cu bonds for these blunt Cu tips (see figure 7(b)). We
can explain this qualitatively from the viewpoint of coordination number (CN) [43].

In a Cu(001) surface, each atom in the first surface layer has eight nearest-neighbor
coordination atoms. But for these atoms in the tip-apex layer in a Cu blunt tip (see figures 7(b)
and (c)), the number of the nearest-neighbor coordination atoms depends on the number of
atoms in the tip-apex layer. For these four atoms in the tip-apex layer of the Cu29 tip, their CN
is six. Whether the Co adatom is adhered to the surface or to the tip, it would increase the CN
of the atoms in the surface layer or these atoms in the tip-apex layer. By introducing the Co
adatom, the CN for these four Cu atoms in the first surface layer or for these four Cu atoms in
the tip-apex layer of the Cu29 tip (see figure 7(b)) increases by one. We have plotted the cohesive
function of bulk Cu atoms as a function of the number of Cu neighbors (see figure 7(d)). From
this figure, one can see that the total energy is lowered more effectively by increasing the CN
of the atom with lower CN. Due to the fact that the CN for these four atoms in the tip-apex
layer (6) is smaller than that for these four atoms in the first surface layer (8), the Co adatom
tends to stay with the Cu29 tip and lower the total energy more effectively.
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While for the junctions containing other blunt Cu tips (for example, see figure 7(c),
16 atoms in the tip-apex layer), each of these four atoms at the tip side or at the surface side
has eight nearest-neighbor atoms. However, due to the significant relaxations coming from the
different layer of the tip, the CN of these four atoms in the apex layer of the tip will increase. As
a result, the CN is larger than that for the atoms in the surface. When retracting the tip from the
surface, the Co adatom will still stay at the surface in order to lower the energy more effectively.

The many-body contribution to the total energy might play an important role during the
VM of the adatom, which has been found to participate in stabilizing an adsorbate on a surface
in the presence of the apex [39]. The triple–dipole dispersive interaction between two atoms in
the apex and the adsorbate tends to reduce the difference in energy between the more stable and
the less stable position, especially for the adsorption of molecules on the tip [39]. Thus, it is
deduced that the many-body contribution is different for different tip structures.

It should be noted that the main results in this work are qualitatively not affected if we
increase the tip height but keep its shape (still the same atoms in the tip-apex layer) and stacking
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of the tip for the sharp tip and the blunt tip with four atoms in the tip-apex layer. But for other
blunt tips, the tip will collapse when one extracts the adatom from the surface. This is beyond
the scope of this work.

4. Conclusions

In summary, we have studied the manipulation of single Co adatoms on a Cu(001) surface using
Co or Cu tips. It is revealed that whether the Co adatom can be extracted or not depends on tip
geometry and composition. The possibilities of the VM of single magnetic adatoms on metal
surfaces with a STM tip at zero bias voltage are demonstrated. A double potential well model
and the concept of CN are used to explain the shift of the minimum potential well from the tip
side to the surface side or vice versa.

We believe that the findings in this work are of importance to succeed in carrying atoms or
molecules one by one with a STM tip on surfaces. One can also obtain the utmost geometrical
resolution with STM by this VM.
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