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It was recently shown [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002
(2010)] that the complete wavefunction for a system of electrons and nuclei evolving in a time-
dependent external potential can be exactly factorized into an electronic wavefunction and a nuclear
wavefunction. The concepts of an exact time-dependent potential energy surface (TDPES) and exact
time-dependent vector potential emerge naturally from the formalism. Here, we present a detailed de-
scription of the formalism, including a full derivation of the equations that the electronic and nuclear
wavefunctions satisfy. We demonstrate the relationship of this exact factorization to the traditional
Born-Oppenheimer expansion. A one-dimensional model of the H+

2 molecule in a laser field shows
the usefulness of the exact TDPES in interpreting coupled electron-nuclear dynamics: we show how
features of its structure indicate the mechanism of dissociation. We compare the exact TDPES with
potential energy surfaces from the time-dependent Hartree-approach, and also compare traditional
Ehrenfest dynamics with Ehrenfest dynamics on the exact TDPES. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4745836]

I. INTRODUCTION

The interplay of nuclear and electronic dynamics in the
presence of time-dependent external fields leads to fascinating
phenomena, especially beyond the perturbative regime, e.g.,
photo-induced molecular dissociation, charge-resonance en-
hanced ionization, control of electron localization, electron-
hole migration after photo-excitation, to name a few.2–6 The
exact solution of the time-dependent Schrödinger equation
(TDSE) is currently out of computational reach except for
the very simplest of molecules,7 such as H+

2 , so usually ap-
proximate methods are used. Typically, (but not always, see
Refs. 8–11), these methods treat the nuclei classically as
point charges with electron-nuclear coupling given by Ehren-
fest dynamics, or surface-hopping;12 a topical application is
to model photochemical processes,13, 14 for example, in solar
cells, to study the (field-free) dynamics ensuing after an initial
electronic excitation. Indeed, several examples have shown
that the predicted electron-hole migration can depend criti-
cally on the description of the nuclear motion and how it is
correlated with the electronic dynamics (see Refs. 5 and 6
and references within). Apart from enabling calculations on
more than the simplest systems possible, these methods pro-
vide much intuition, in particular, through the central con-
cept of the potential energy surface (PES). Indeed, the very
idea itself of surface-hopping would not exist without the no-
tion of a landscape of coupled PESs. Dressed molecular po-
tentials such as light-induced molecular potentials (LIMPS)
(Ref. 15) have proven valuable in understanding processes
such as bond-softening, stabilization against dissociation,
etc., where the laser field induces avoided crossings be-

tween PESs. Approximate time-dependent potential energy
surfaces (TDPES) were introduced by Kono16 as instanta-
neous eigenvalues of the electronic Hamiltonian, and have
proven extremely useful in the interpretation of system-field
phenomena, as have the quasi-static or phase-adiabatic PES’s
used recently to interpret electron localization in dissocia-
tive ionization.17 Recent work of Cederbaum18 introduced
a TDPES in a different way, by generalizing the Born-
Oppenheimer (BO) approximation to include time-dependent
external potentials. In short, the PES is perhaps the most cen-
tral concept in our understanding of molecular motion.

In a recent Letter,1 we showed that an exact TDPES may
be defined, via a rigorous separation of electronic and nu-
clear motion by introducing an exact factorization of the full
electron-nuclear wavefunction. The idea of an exact factor-
ization was first introduced by Hunter19 for the static case.
He also deduced the exact equation of motion for the nu-
clear factor. The equation of motion for the electronic wave-
function was first given by Gidopoulos and Gross20 for the
time-independent case. Both in the static and in the time-
dependent cases, the factorization leads to an exact defini-
tion of the PES, and also of the Berry vector potential. What
is particularly interesting about the vector potential is that
Berry-Pancharatnam phases21 are usually interpreted as aris-
ing from some approximation where a system is decoupled
from “the rest of the world,” thereby making the system
Hamiltonian dependent on some “environmental” parameters.
For example, in the static BO approximation, the electronic
Hamiltonian depends parametrically on nuclear positions, and
when the molecular wavefunction is approximated by a single
product of a nuclear wavefunction and an eigenstate of the
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electronic Hamiltonian, the equation of motion for the for-
mer contains a Berry vector potential. The question whether
the BO Berry phase survives in the exact treatment was first
discussed in Ref. 20 for the static case and in Ref. 1 for the
time-dependent case.

In the present paper, we provide the detailed derivation
of the formalism of Ref. 1 (Sec. II), analyse features of the
exact electron-nuclear coupling terms in general (Sec. III), in-
cluding their relationship to couplings in the traditional Born-
Oppenheimer expansion, and then study the TDPES for the
specific case of a model H+

2 molecule in an oscillating elec-
tric field (Sec. IV). The remainder of this introduction serves
to set up the problem at hand, and to remind the reader of the
Born-Oppenheimer treatment of the electron-nuclear system.

A. The Hamiltonian

In this section, we establish notation and define the
Hamiltonian for the combined system of electrons and nu-
clei. The coordinates of the Ne electrons are collectively de-
noted by rs where r ≡ {rj } and s ≡ {sj }, j = 1 . . . Ne, repre-
sent electronic spatial and spin coordinates, respectively. The
Nn nuclei have masses M1 . . . MNn

and charges Z1 . . . ZNn
and

coordinates collectively denoted by Rσ , where R ≡ {Rα} and
σ ≡ {σα}, α = 1 . . . Nn, represent nuclear spatial and spin co-
ordinates, respectively. Furthermore, we consider that the sys-
tem is under the influence of some time-dependent external
scalar field. The system is described, non-relativistically, by
the Hamiltonian

Ĥ = ĤBO(r, R) + V̂ e
ext(r, t) + T̂n(R) + V̂ n

ext(R, t), (1)

where ĤBO(r, R) is the familiar Born-Oppenheimer elec-
tronic Hamiltonian

ĤBO = T̂e(r) + Ŵee(r) + Ŵen(r, R) + Ŵnn(R). (2)

The subscripts “e” and “n” refer to electrons and nuclei, re-
spectively, and atomic units are used throughout (e2 = ¯
= me = 1). Here,

T̂e = −
Ne∑
j=1

1

2
∇2

j , (3)

and

T̂n = −
Nn∑

α=1

1

2Mα

∇2
α, (4)

denote the kinetic-energy operators of the electrons and nu-
clei, respectively. All external scalar potentials on the system
(e.g., electric fields) are represented by

V̂ n
ext =

Nn∑
α

vn
ext(Rα, t), (5)

and

V̂ e
ext =

Ne∑
j

ve
ext(rj , t). (6)

The particle-particle Coulomb interactions have the form

Ŵnn = 1

2

Nn∑
α, β =1
α �=β

ZαZβ

|Rα − Rβ | , (7)

Ŵee = 1

2

Ne∑
i, j =1
i �=j

1

|ri − rj | , (8)

Ŵen = −
Ne∑
j

Nn∑
α

Zα

|rj − Rα| . (9)

The quantum mechanical equation of motion of such a system
is given by the TDSE

Ĥ�(rs, Rσ , t) = i∂t�(rs, Rσ , t). (10)

The full electron-nuclear wavefunction, �(rs, Rσ , t), that
satisfies the TDSE (10), contains the complete information on
the system. As discussed in the Introduction, it can be solved
numerically only for very small systems of one or two elec-
trons and nuclei and, moreover, � does not give access to
PESs, which provide an intuitive understanding and interpre-
tation of the coupled electron-nuclear dynamics.

B. The Born-Oppenheimer approximation

The Born-Oppenheimer approximation is among the
most basic approximations in the quantum theory of
molecules and solids. Consider the case when there is no
external time-dependence in the Hamiltonian. The BO ap-
proximation relies on the fact that electrons typically move
much faster than the nuclei; on the timescale of nuclear mo-
tion, the electrons “instantly” adjust to remain on the instan-
taneous eigenstate. This “adiabatic approximation” allows us
to visualize a molecule or solid as a set of nuclei moving on
the PES generated by the electrons in a specific electronic
eigenstate. The electronic Hamiltonian ĤBO(r, R) depends
parametrically on the nuclear positions, via the electron-
nuclear Coulomb interaction. That is, the stationary electronic
Schrödinger equation is solved for each fixed nuclear config-
uration Rσ ,

ĤBO(r, R)φj

Rσ (rs) = V
j

BO(Rσ )φj

Rσ (rs), (11)

yielding (Rσ )-dependent eigenvalues V
j

BO(Rσ ) and

eigenfunctions φ
j

Rσ . The total molecular wavefunction,

�BO(rs, Rσ ), is then approximated as a product of the

relevant electronic state, φ
j

Rσ (rs), and a nuclear wavefunc-

tion χBO
jν (Rσ ) satisfying the corresponding BO nuclear

Schrödinger equation(
Nn∑

α=1

1

2Mα

(− i∇α + FBO
jj,α(Rσ )

)2 + ε
j

BO(Rσ )

)
χBO

jν (Rσ )

= EχBO
jν (Rσ ), (12)
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where

ε
j

BO(Rσ )

=
∑

s

〈
φ

j

Rσ

∣∣∣ ĤBO(r, R)+
∑

α

(− i∇α − FBO
jj,α

)2
2Mα

∣∣φj

Rσ

〉
r,

(13)

and

FBO
jj,α(Rσ ) = −i

∑
s

〈φj

Rσ |∇αφ
j

Rσ 〉r, (14)

where 〈..|..〉r indicates an inner product over spatial electronic
variables only. The index ν of the nuclear wave function la-
bels the vibrational/rotational eigenstate on the jth PES. The
second term on the right of Eq. (13) is often referred to as
the “BO diagonal correction” or “adiabatic correction.” The
potential energy surface ε

j

BO(Rσ ) is enormously important
in molecular physics and quantum chemistry. It is a central
tool in the analysis and interpretation of molecular absorp-
tion and emission spectra, experiments involving nuclear mo-
tion, mechanisms of dissociation, energy-transfer, for exam-
ple. The nuclear dynamics on a single PES (sometimes called
“BO dynamics”) is obtained by using the Hamiltonian on the
left of Eq. (12) in a time-dependent Schrödinger equation for
a time-dependent nuclear wavefunction χ (Rσ , t). This corre-
sponds to approximating the total molecular wavefunction by
a time-dependent nuclear wavepacket multiplied with a static
electronic BO state

�(rs, Rσ , t) ≈ χBO(Rσ , t)φj

Rσ (rs). (15)

The vector potential FBO
jj,α(Rσ ), especially the Berry phase

associated with it,
∮
FBO

jj,α(Rσ ) · dR, captures the essential
features of the behavior of a system with conical intersec-
tions. Inclusion of the Berry phase can significantly shift and
re-order the energy eigenvalues of molecular roto-vibrational
spectra, as well as scattering cross-sections (although some-
times undetected in experiments that measure integrated
quantities, due to cancellations between paths, see e.g.,
Refs. 22–26 and references within).

It appears from the above discussion that in the tra-
ditional treatment of molecules and solids, the concepts of
the PES and the Berry phase arise as a consequence of the
BO approximation. Some of the most fascinating phenom-
ena of condensed-matter physics, such as superconductivity,
however, appear in the regime where the BO approximation
is not valid; likewise, typical photodynamical processes in
molecules require going beyond the single-electronic-surface
picture. This raises the question: If one were to solve the
Schrödinger equation of the full electron-nuclear Hamiltonian
exactly (i.e., beyond the BO approximation), do the Berry
phase and the potential energy surface survive, with a pos-
sibly modified form, and if so, how and where do they show
up? What is their relation to the traditional potential energy
surface and Berry phase in the BO approximation? Moreover,
many interesting phenomena occur when molecules or solids
are exposed to time-dependent external fields, e.g., lasers. Can

one give a precise meaning to a time-dependent potential en-
ergy surface and a time-dependent vector potential?

Before answering the points raised above, focussing
on the time-dependent case, we briefly discuss the Born-
Oppenheimer expansion, which solves the full TDSE Eq. (10)
exactly for the coupled electron-nuclear system.

C. The Born-Oppenheimer expansion

The set of electronic eigenfunctions {φj

Rσ (rs)} calculated

from Eq. (11) form a complete orthonormal set in the elec-
tronic space for each fixed Rσ ,

∑
s

∫
drφl∗

Rσ (rs)φj

Rσ (rs) = δlj , (16)

therefore, the total time-dependent wavefunction of the sys-
tem �(rs, Rσ , t) can be expanded in that basis

�(rs, Rσ , t) =
∞∑

j=1

χBO
j (Rσ , t)φj

Rσ (rs). (17)

Here,

χBO
j (Rσ , t) =

∑
s

∫
drφj∗

Rσ (rs)�(rs, Rσ , t) (18)

are the expansion coefficients, which are functions of the nu-
clear degrees of freedom and time. Equation (17) is the so-
called BO expansion, which is an exact representation of the
complete molecular wavefunction due to the completeness of
{φj

Rσ (rs)}. It applies also to fully-time-dependent problems

where � evolves under external time-dependent potentials
V̂ e

ext. In practice, for numerically feasible calculations, ap-
proximations are introduced to limit the expansion to a small
subset of {φj

Rσ (rs)}. By inserting the expansion (17) into

Eq. (10), multiplying by φ
j∗
Rσ (rs) from the left, and integrating

over the electronic degrees of freedom, equations for the ex-
pansion coefficients χBO

j (Rσ , t) are determined. One obtains

[∑
α

1

2Mα

(− i∇α + FBO
kk,α

)2 + V̂ n
ext + εk

BO

]
χBO

k

+
∑
j �=k

[
〈φk|V̂ e

ext(t)|φj 〉−
∑

α

�BO
kj,α

]
χBO

j = i
∂χBO

k

∂t
. (19)

Here,

εk
BO(Rσ , t) =

∑
σ

〈
φk

Rσ

∣∣ĤBO + V̂ e
ext

+
∑

α

(− i∇α − FBO
kk,α

)2
2Mα

∣∣φk
Rσ

〉
r (20)

is the time-dependent scalar potential and is the kth general-
ized BO potential energy, generalized to account for the time-
dependent external field (cf. Eq. (13)). The terms

�BO
kj,α(R) = 1

2Mα

[
GBO

kj,α(R) + 2FBO
kj,α(R) · (i∇α)

]
(21)
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are called the “nonadiabatic couplings,” defined by27–29

FBO
kj,α(R) = −i

〈
φk

Rσ

∣∣∇αφ
j

Rσ

〉
,

GBO
kj,α(R) = 〈φk

Rσ

∣∣∇2
αφ

j

Rσ

〉
. (22)

II. EXACT FACTORIZATION OF THE
TIME-DEPENDENT ELECTRON-NUCLEAR
WAVEFUNCTION

The BO expansion Eq. (17) yields the complete molecu-
lar wavefunction exactly. Instead of having an infinite sum of
terms involving an infinite set of generalized PES’s and non-
adiabatic couplings, the question arises whether it is possible
to represent the complete, time-dependent, electron-nuclear
wavefunction exactly as a single product of an electronic
wavefunction and a nuclear wavefunction. In this section, we
show that the answer is yes. We derive formally exact equa-
tions of motion for each subsystem, out of which emerge rig-
orous definitions of a time-dependent potential energy surface
(TDPES) and a time-dependent vector potential.

Visually, the decomposition is similar in form to the
single-surface BO approximation, yet it is exact. There is no
assumption on the time scale of the motions of each subsys-
tem, i.e., unlike in the BO approximation, we do not solve
for the “fast” variables first and then feed it into the equa-
tion for the “slower” variables. Instead, the equations of mo-
tion for each subsystem are derived together, in a variational
approach. The exact decomposition, contrary to the BO sepa-
ration, accounts for the full correlation between the two sub-
systems, regardless of the mass and energy of the nuclear sub-
system. In the following, we formalize the idea as a theorem,
which we then prove. We discuss in detail the implications of
this exact decomposition.

A. The exact factorization

Theorem I. (a): The exact solution of Eq. (10) can be
written as a single product

�(rs, Rσ , t) = 
Rσ (rs, t)χ (Rσ , t), (23)

where 
Rσ (rs, t) satisfies the Partial Normalization Condi-
tion (PNC), ∑

s

∫
dr|
Rσ (rs, t)|2 = 1, (24)

for any fixed nuclear configuration, Rσ , at any time t.
The PNC is critical in making this theorem meaningful:

Eq. (23) on its own would be rather meaningless, because,
for example, one could then simply just take χ (Rσ , t) ≡ 1.
In fact, one can come up with many different decompositions
that satisfy Eq. (23) but that violate the PNC Eq. (24); it is
the latter that makes the decomposition unique up to a gauge-
like transformation, as we shall see shortly in Sec. II B. We
will also see there that it is the PNC that allows the interpre-
tation of 
Rσ (rs, t) as a conditional probability amplitude,
and χ (Rσ , t) as a marginal probability amplitude, leading to
their identification as electronic and nuclear wavefunctions,
respectively. First, we prove Part (a) of Theorem I.

Proof: Given �(rs, Rσ , t), the exact solution of the full
TDSE (10), we choose χ (Rσ , t) and 
Rσ (rs, t), at any in-
stant in time, as

χ (Rσ , t) = eiS(Rσ,t)
√∑

s

∫
dr|�(rs, Rσ , t)|2, (25)

and


Rσ (rs, t) = �(rs, Rσ , t)/χ (Rσ , t), (26)

where S(Rσ , t) is real. The PNC Eq. (24) then follows imme-
diately

∑
s

∫
dr|
Rσ (rs, t)|2 =

∑
s

∫
dr|�(rs, Rσ , t)|2
|χ (Rσ , t)|2 ,

= |χ (Rσ , t)|2
|χ (Rσ , t)|2 = 1. (27)

This concludes the proof of Theorem I (a). It will become
clear throughout this paper that, in many respects, the nuclear
factor χ (Rσ , t) can be viewed as a proper nuclear wavefunc-
tion. Like in the static case,20 introducing the phase factor in
Eq. (25) allows χ (Rσ , t) to have the correct antisymmetry if
the nuclear subsystem contains identical fermionic nuclei.

Next comes the question; what equations do 
Rσ (rs, t)
and χ (Rσ , t) satisfy? The answer entails the second part of
Theorem I.

Theorem I (b): The wavefunctions 
Rσ (rs, t) and
χ (Rσ , t) satisfy(

Ĥel(rs, Rσ , t) − ε(Rσ , t)
)

Rσ (rs, t) = i∂t
Rσ (rs, t),

(28)(
Nn∑

α=1

1

2Mα

(−i∇α + Aα(Rσ , t))2 + V̂ n
ext(R, t) + ε(Rσ , t)

)

×χ (Rσ , t) = i∂tχ (Rσ , t), (29)

where the electronic Hamiltonian is

Ĥel(rs, Rσ , t)=ĤBO(r, R, t) + V̂ e
ext(r, t) + Û coup

en [
Rσ , χ ].
(30)

Here, the electron-nuclear coupling potential Û
coup
en [
Rσ , χ ],

scalar potential ε(Rσ , t), and vector potential Aα(Rσ , t)
terms are

Û coup
en [
Rσ , χ ]

=
Nn∑

α=1

1

Mα

[
(−i∇α − Aα(Rσ , t))2

2

+
(−i∇αχ (Rσ , t)

χ (Rσ , t)
+Aα(Rσ , t)

)
· (−i∇α− Aα(Rσ , t))

]
,

(31)

ε(Rσ , t) =
∑

s

〈
Rσ (t)|Ĥel((rs, Rσ , t) − i∂t |
Rσ (t)〉r,

(32)

Aα(Rσ , t) =
∑

s

〈
Rσ (t)| − i∇α
Rσ (t)〉r, (33)
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where 〈..|..|..〉r denotes an inner product over all spatial elec-
tronic variables only.

Proof: In order to derive the equations of motion for

Rσ (rs, t) and χ (Rσ , t), we follow the strategy employed in
the static case (see Ref. 20), i.e., we plug the product ansatz
in the variational principle and search for the stationary point.
Afterwards, we prove: if 
Rσ (rs, t) and χ (Rσ , t) are the so-
lutions of Eqs. (28) and (29), then 
Rσ (rs, t)χ (Rσ , t) is the
solution of TDSE (10). We begin the derivation by briefly
reviewing Frenkel’s stationary action principle as this is the
key instrument to derive the equations of motion for each
subsystem.

The quantum mechanical action is defined as

S[�,�∗] =
∫ tf

ti

dt〈�|Ĥ − i∂t |�〉, (34)

a functional of the time-dependent wavefunction �(t) and its
complex conjugate. The equation of motion of the quantum
system, the TDSE of Eq. (10), is obtained by requiring the
variation of the action S with respect to all wavefunctions
�(t) that satisfy the boundary condition

δ�(ti) = δ�(tf ) = 0, (35)

to be stationary, i.e.,

δ�∗S = 0. (36)

Now we apply this general variational principle to our prob-
lem in the following way. We insert the product wavefunc-
tion in the action functional (34), with Hamiltonian given by
Eq. (1), rewriting it as

S[
Rσ ,
∗
Rσ , χ, χ∗] =

∑
s,σ

∫ tf

ti

dt

∫
dR
∫

dr

[
|χ |2
∗

Rσ

(
ĤBO + V̂ e

ext +
∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

+ |
Rσ |2χ∗
(∑

α

−∇2
α

2Mα

+ V̂ n
ext − i∂t

)
χ + |χ |2
∗

Rσ

∑
α

1

Mα

(−i∇αχ/χ ) · (−i∇α
Rσ )

]
. (37)

The equations of motion for 
Rσ (rs, t) and χ (Rσ , t) are ob-
tained by requiring the action functional (37) to be stationary
with respect to variations of each wavefunction subject to the
PNC (24), i.e.,

δS[
Rσ ,
∗
Rσ , χ, χ∗]

δ
∗
Rσ (rs, t)

= 0, and
δS[
Rσ ,
∗

Rσ , χ, χ∗]

δχ∗(Rσ , t)
= 0.

(38)
Variation of Eq. (37) with respect to 
∗

Rσ (rs) leads to

|χ |2
(

ĤBO + V̂ e
ext +

∑
α

−∇2
α

2Mα

− i∂t

)

Rσ

+
[
χ∗
(∑

α

−∇2
α

2Mα

+ V̂ n
ext − i∂t

)
χ

]

Rσ

+|χ |2
(∑

α

1

Mα

(−i∇αχ/χ ) · (−i∇α
Rσ )

)
= 0.

Dividing the expression above by |χ |2 and rearranging yields(
ĤBO + V̂ e

ext +
∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

+
∑

α

1

Mα

(−i∇αχ/χ ) · (−i∇α
Rσ )

= −
(∑

α

−∇2
α

2Mα
+ V̂ n

ext − i∂t

)
χ

χ
· 
Rσ . (39)

Variation of Eq. (37) with respect to χ* yields⎡
⎣∑

s

∫
dr
∗

Rσ

(
ĤBO + V̂ e

ext +
∑

α

−∇2
α

2Mα

− i∂t

)

Rσ

⎤
⎦χ

+
[∑

α

−∇2
α

2Mα

+V̂ n
ext

]
χ+
[∑

α

1

Mα

(−i∇αχ/χ ) · Aα

]
χ = i∂tχ,

(40)

where we enforced the PNC, and defined

Aα[
Rσ ] :=
∑

s

∫
dr
∗

Rσ (rs)(−i∇α
Rσ (rs)). (41)

This is a real-valued vector potential (see shortly). Inserting
Eq. (40) on the RHS of Eq. (39) leads, after some straight-
forward algebra, to Eqs. (28)–(33). The product wavefunc-
tion Eq. (23), satisfying these equations, therefore represents
a stationary point of the action functional (37) under the PNC
Eq. (24). To complete the proof, it remains to verify that if

Rσ (rσ , t) satisfies Eq. (28) and χ (Rσ , t) satisfies Eq. (29),
then the product 
Rσ (rs, t)χ (Rσ , t) is an exact solution of
the TDSE. Approximate solutions of the TDSE may satisfy
the stationary action principle, if variations are taken over
a limited set of wavefunctions, e.g., the multi-configuration
time-dependent Hartree equations44 may be derived via the
Frenkel variational principle. To dispel any possible doubts
that the product form of Eq. (23) subject to Eq. (24) is gen-
eral, we now verify that our solution is exact and not an
approximation. Applying the product rule, i∂t�(rs, Rσ , t)
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= χ (Rσ , t)i∂t
Rσ (rs, t) + 
Rσ (rs, t)i∂tχ (Rσ , t), and in-
serting Eqs. (28) and (29), we obtain

χ
(
i∂t
Rσ

)

= χ
(
ĤBO + V̂ e

ext

)

Rσ + χ

Nn∑
α

(−i∇α − Aα)2

2Mα


Rσ

+χ

Nn∑
α

(−i∇αχ/χ+Aα) · (−i∇α − Aα)

Mα


Rσ −χε
Rσ ,

(42)


Rσ (i∂tχ ) = 
Rσ

Nn∑
α

(−i∇α + Aα(Rσ , t))2

2Mα

χ

+
Rσ V̂ n
extχ + 
Rσ εχ. (43)

Summing Eqs. (42) and (43) leads to the TDSE for the com-
plete system and completes the proof that the wavefunctions
satisfying Eqs. (28)–(33) do solve the TDSE exactly.

Alternatively, Eqs. (28)−(33) can be obtained by re-
placing �(rs, Rσ , t), in the TDSE (10), by the product

Rσ (rs, t)χ (Rσ , t) and using the PNC (24). The form of
electron-nuclear coupling term, Eq. (31), is the same as the
static case (see Ref. 20). The exact TDPES, Eq. (32), on the
other hand is not simply the expectation value of Ĥel but con-
tains, in addition, the term 〈
Rσ | − i∂t
Rσ 〉. The appearance
of this term is essential to ensure the form invariance of the
Eqs. (28) −(33) under the gauge transformation (44), that will
be discussed in Sec. II B.

B. Uniqueness of the electronic and nuclear
wavefunctions

We now delve a little deeper into features of our ex-
act factorization. As briefly mentioned earlier, the factoriza-
tion can be viewed in a standard probabilistic setting:19 The
square of the molecular wavefunction can be viewed as a mul-
tivariate probability distribution that can be factorized into a
marginal probability of a set of variables (the nuclear coor-
dinates) and a conditional probability of the rest of the vari-
ables (the electronic coordinates, conditionally dependent on
the nuclear coordinates). In this sense, we identify χ (Rσ , t)
as the nuclear wavefunction (marginal probability amplitude),
and 
Rσ (rs, t) as the electronic wavefunction (conditional
probability amplitude). An equivalent formalism is to view,
instead, the nuclear wavefunction as a conditional probability
amplitude depending parametrically on the electronic coor-
dinate, i.e., χr s(Rσ , t), with the electronic wavefunction as
the marginal probability amplitude of the electronic coordi-
nates, i.e., 
(rs, t). We choose to use the former decomposi-
tion however to later make natural connections with the BO
approach. In this section, we argue why we can view the prob-
ability amplitudes χ (Rσ , t) and 
Rσ (rs, t) as nuclear and
electronic wavefunctions, and we will assign some meaning
to the terms that arise in their equations of motion.

A first question that arises is: is this decomposition
unique? We answer this in Theorem 2.

Theorem 2 (a): Equations (28)−(33) are form-invariant
up to within the gauge-like transformation


̃Rσ (rs, t) := eiθ(Rσ,t)
Rσ (rs, t),

χ̃ (Rσ , t) := e−iθ(Rσ ,t)χ (Rσ , t), (44)

Aα(Rσ , t) → Ãα(Rσ , t) = Aα(Rσ , t) + ∇αθ (Rσ , t),

ε(Rσ , t) → ε̃(Rσ , t) = ε(Rσ , t) + ∂tθ (Rσ , t). (45)

(b) The wavefunctions 
Rσ (rs, t) and χ (Rσ , t) are unique
up to within the (Rσ , t)-dependent phase transformation,
Eq. (44).

To prove part (a), simply substitute Eqs. (44) and (45) into
Eqs. (28)–(33). Part (b) is readily shown by first assuming
that 
Rσχ and 
̃Rσ χ̃ are two different representations of the
exact wave function �(rs, Rσ , t), i.e.,

�(rs, Rσ , t) = 
Rσ (rs, t)χ (Rσ , t) = 
̃Rσ (rs, t)χ̃(Rσ , t).

Then

χ

χ̃
=


̃Rσ


Rσ

=: g(Rσ , t), (46)

and

|
̃Rσ (rs, t)|2 = |g(Rσ , t)|2|
Rσ (rs, t)|2. (47)

From Theorem 1, both 
̃Rσ (rs, t) and 
Rσ (rs, t) satisfy the
PNC. Hence,∑

s

∫
dr|
̃Rσ (rs, t)|2 =|g(Rσ , t)|2

∑
s

∫
dr|
Rσ (rs, t)|2,

(48)
and |g(Rσ , t)|2 = 1. Therefore, g(Rσ , t) must be equal to a
purely (Rσ , t)-dependence phase

g(Rσ , t) = eiθ(Rσ,t). (49)

This completes the proof of Theorem 2.
The interpretation of 
R and χ as electronic and nu-

clear wavefunctions follows from the following observa-
tions. The probability density of finding the nuclear config-
uration R at time t,

∑
s

∫ |�(rs, Rσ , t)|2dr = |χ (Rσ , t)|2,
as can readily be shown by substituting the product wave-
function Eq. (23) into the left-hand-side and using the PNC
Eq. (24). Not only does χ (Rσ , t) therefore yield the nuclear
(Nn-body) probability density, we shall see later in Sec. III A
that it also reproduces the exact nuclear (Nn-body) current-
density. The modulus-square of the electronic wavefunction,
|
Rσ (rs, t)|2 = |�(rs, Rσ , t)|2/|χ (Rσ , t)|2 gives the con-
ditional probability of finding the electrons at r with spin con-
figuration s, given that the nuclear configuration is Rσ .

Note that, strictly speaking, the definition of the condi-
tional probability amplitude |
Rσ (rs, t)|2 via Eq. (26), only

holds for non-zero marginal probabilities |χ (Rσ , t)|2. In the
case the nuclear density, and the full molecular wavefunc-
tion, have a node at some R

0
, the electronic wavefunction

would be defined by taking a limit. However, it is actually
very unlikely that the nuclear density has a node.30, 31 This
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can be seen by expanding the full electron-nuclear wavefunc-
tion, �(rs, Rσ , t), in terms of the BO-electronic states, as in
Eq. (17). Then, the nuclear density can be expressed as an
infinite sum of non-negative terms

|χ (Rσ , t)|2 =
∞∑

j=1

∣∣χBO
j (Rσ , t)

∣∣2. (50)

In general, it is extremely unlikely that every term in the
summation becomes zero at the same nuclear configuration
R

0
σ

0
, unless dictated by symmetry20 (see the end of this sec-

tion for a discussion on symmetry). Symmetry-dictated nodes
likely lead to a finite, well-defined, value of |
Rσ (rs, t)|2 due
to the linear behavior of the wavefunctions in the vicinity of
these nodes.

Equations (28)−(33) determine the exact time-dependent
molecular wavefunction, given an initial state. As writ-
ten, the nuclear equation is particularly appealing as a
Schrödinger equation with both scalar and vector-potential
coupling terms contributing effective forces on the nuclei in-
cluding any geometric phase effects. We call ε(Rσ , t) and
A(Rσ , t) the exact TDPES and exact time-dependent Berry
connection, respectively. These two quantities, along with
the electron-nuclear coupling potential Û

coup
en [
Rσ , χ ], medi-

ate the coupling between the nuclear and the electronic de-
grees of freedom in a formally exact way. The three sec-
tions in Sec. III are each devoted to a closer study of these
terms.

We conclude this section by discussing the sym-
metry properties of χ (Rσ , t) and 
Rσ (rs, t): The
nuclear wavefunction χ (Rσ , t) must preserve the
symmetry of the full electron-nuclear wavefunction
�(rs, Rσ , t) with respect to exchange of identical
nuclei. This constrains the allowed gauge transforma-
tion (44)−(45). The electronic wavefunction 
Rσ (rs, t)
= �(rs, Rσ , t)/χ (Rσ , t) is invariant under any nuclear per-
mutation because any fermionic sign cancels out between the
full molecular wavefunction and the nuclear wavefunction.

In the rest of the paper, we drop the spin indices σ and s
for notational simplicity.

C. Simple illustration: The H atom in an electric field

The example of the hydrogen atom in an electric field
provides a simple demonstration of our formalism. The
Hamiltonian is

H = − 1

2M
∇2

R − 1

2
∇2

r − 1

|R − r| + (r − R) · E(t), (51)

where r and R are the electron and proton coordinates,
respectively, E(t) is the applied electric field, and M is
the proton mass. The exact solution is known: in terms
of the center of mass and relative coordinates, RCM = (r
+ MR)/(M + 1), u = r − R, the problem is separable, and we
have

�(RCM, u, t) = e
i(K·RCM− K2

2(M+1) t)φ(u, t), (52)

where φ(u, t) satisfies the following equation:(
−∇2

u

2μ
− 1

u
+ u · E(t)

)
φ(u, t) = i∂tφ(u, t), (53)

and μ = M/(M + 1) is the reduced mass. The full wavefunc-
tion, Eq. (52), represents free-particle plane-wave motion in
the center of mass coordinate, with K representing the total
momentum of the system. The form of Eq. (52) suggests one
possible factorization for Eqs. (23) and (24) as

χ (R, t) = e
i( −K2 t

2(M+1) + M
(M+1) K·R)

,


R(r, t) = eiK·r/(M+1)φ(r − R, t), (54)

with the exact Berry potential and TDPES given by

A(R, t) = −i

∫
φ∗(r − R, t)∇Rφ(r − R, t)dr = 0, (55)

ε(R, t) = K2

2(M + 1)
+ R · E(t). (56)

The vector potential, Eq. (55), is zero in the gauge implicit
in our choice for Eq. (54). This is easily confirmed by insert-
ing Eq. (54) in the nuclear equation (29), which reads for our
problem(

1

M
(−i∇+A)2−R · E(t) + ε(R, t)

)
χ (R, t) = i∂tχ (R, t).

(57)
Equations (56) and (57) show that, in this case, the role of the
TDPES is to cancel out the external laser field in the nuclear
equation, which is exactly as it should be. Only by this can-
cellation, the nuclear motion can be a plane wave.

III. THE EXACT ELECTRON-NUCLEAR
COUPLING TERMS

We now take a closer look at each of the three terms
A(Rσ , t), ε(Rσ , t), and Û

coup
en [
Rσ , χ ], that mediate the

coupling between electron and nuclear dynamics exactly. In
these three terms, all of the non-adiabatic coupling effects of
the Born-Oppenheimer expansion are effectively contained.

A. The time-dependent Berry connection

Equations (28)−(33) demonstrate that a Berry connec-
tion indeed appears in the exact treatment of coupled electron-
ion dynamics, a question which was raised in the Introduction.
In this section, we point out some properties of this object to
help us understand what it represents.

First, we show that the vector potential Aα is real. Taking
the gradient with respect to nuclear coordinates of the PNC
(Eq. (24)), yields

0 = ∇α

∫
dr
∗

R(r)
R(r),

= 2Re
∫

dr
∗
R(r)∇α
R(r), (58)

(using the product rule). Comparing with the definition
Eq. (33), we readily conclude Aα is real.
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Second, we insert Eqs. (25) and (26) into Eq. (33) to re-
veal the following expression for the vector potential:

Aα(R, t) =
Im 〈�(t)| ∇α�(t)〉r

|χ (R, t)|2 − ∇αS(R, t). (59)

This shows that the vector potential is the difference of para-
magnetic nuclear velocity fields derived from the full and
nuclear wavefunctions. In fact, since Im 〈�(t)| ∇α�(t)〉r is
the true nuclear (many-body) current density, Eq. (59) im-
plies that the gauge-invariant current density, Im(χ*∇αχ )
+ |χ |2Aα , that follows from the nuclear Hamiltonian in
Eq. (29) does indeed reproduce the exact nuclear current
density.32 As discussed in Sec. II, the solution χ (R, t) of
Eq. (28) yields a proper nuclear many-body wavefunction:
Its absolute-value squared gives the exact nuclear (Nn-body)
density while its phase yields the correct nuclear (Nn-body)
current density. (The nuclear kinetic energy evaluated from
χ (R, t) does not equal the nuclear kinetic energy evalu-
ated from the full molecular wavefunction, and their dif-
ference is determined by U

coup
en , as will be discussed in

Sec. III C).
Another interesting aspect of expression (59) is that it

can help to shed light on the question of whether the ex-
act Berry potential produces a real effect or whether it can
actually be gauged away by a suitable choice of θ (R, t) in
Eqs. (44)−(45). Provided the phase S(R, t) is spatially
smooth, the last term on the right-hand-side of Eq. (59) can
be gauged away so any true Berry connection (that cannot be
gauged away) must come from the first term. In the conven-
tional analyses of conical intersections, the phase may not be
smooth: for example, in the Herzberg and Longuet-Higgens
model,26, 45 the two (single-valued) nuclear wavefunctions as-
sociated with a two-state conical intersection between tradi-
tional BO surfaces, each have a phase S = ±φ/2, undefined
at the origin. This has a singular gradient, yielding a delta-
function at the origin in the curl of the vector potential, thus
contributing a non-zero Berry phase. Whether a similar ef-
fect occurs for the exact time-dependent nuclear wavefunction
remains to be explored. When the exact �(t) is real-valued
(e.g., for a non-current-carrying ground state) then the first
term on the right-hand-side of Eq. (59) vanishes and hence
gives a vanishing contribution to the exact Berry connection.
Whether, and under which conditions, the full Berry connec-
tion (59) can be gauged away remains an open question at this
point.

Finally, it is also instructive to express the vector poten-
tial in terms of the BO electronic basis states of Sec. I C. We
first expand the electronic wavefunction


R(r, t) =
∞∑

j=1

Cj (R, t)φj

R(r), (60)

where orthonormality of the φ
j

R (Eq. (16)) means

Cj (R, t) =
∫

drφj∗
R (r)
R(r, t). (61)

The PNC condition becomes

∞∑
j=1

|Cj (R, t)|2 = 1. (62)

Inserting Eq. (60) into Eq. (33), and noting the definition of
the non-adiabatic derivative couplings of Eq. (22), we obtain

Aα(R, t)=
∞∑

j=1

(
− iC∗

j (R, t)∇αCj (R, t)+|Cj (R, t)|2FBO
jj,α(R)

+
∞∑
l �=j

C∗
l (R, t)Cj (R, t)FBO

lj,α (R)

)
. (63)

The exact Berry potential is thereby expressed as a linear
combination of the diagonal and off-diagonal BO derivative
couplings. Any gauge-invariant part of the Berry connection,
that would give rise to a non-zero Berry phase, arises from
the part of Eq. (63) that has a non-zero curl. In the case of
a real-valued electronic wavefunction, each of the three terms
of Eq. (63) vanishes independently giving rise to a zero vector
potential.

B. The time-dependent potential energy surface

The time-dependent potential energy surface ε(R, t) of
Eq. (32) provides an exact time-dependent generalization of
the adiabatic BO potential energy surface. As such, it should
prove to be a powerful interpretive tool for general time-
dependent problems. This will be explored in Sec. IV. We
now begin by analyzing the expression Eq. (32) in a little
more detail.

First, consider the expectation value of the electron-
nuclear coupling term of Eq. (31), 〈
R|Û coup

en |
R〉 that ap-
pears in the TDPES. Only the first term of Eq. (31) contributes
to the expectation value: the second term goes to zero, due to
the very last parenthesis, 〈
R| − i∇α − Aα(R, t)|
R〉, which
vanishes due to the definition of the vector potential. So we
have

ε(R, t) =

⎛
⎜⎝〈
R|ĤBO + V̂ e

ext(r, t)|
R〉r − i〈
R|∂t
R〉r

+
∑

α

〈
R|(−i∇α − Aα(R, t))2|
R〉r

2Mα

)
,

=
(

〈
R|ĤBO + V̂ e
ext(r, t)|
R〉r − i〈
R|∂t
R〉r

+
∑

α

〈∇α
R|∇α
R〉r

2Mα

)
−
∑

α

A2
α(R, t)

2Mα

, (64)

where the second line results from expanding the square in the
first, and making use of the definition of the vector potential.

As we did for the vector potential, we now provide an
expression for the TDPES as an expansion over BO states. In-
serting Eq. (60) into Eq. (64) and performing a little straight-
forward algebra, we obtain
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ε(R, t) =
∑

j

|Cj (R, t)|2V j

BO(R) +
∑
j l

C∗
j (R, t)Cl(R, t)

〈
φ

j

R

∣∣V̂ e
ext(r, t)

∣∣φl
R

〉
r −
∑

j

iC∗
j (R, t)∂tCj (R, t)

+
∑

α

1

2Mα

⎛
⎝∑

j

|∇αCj |2 +
∑
j l

C∗
j Cl

(
i∇α · FBO

jl,α − GBO
jl,α

)− 2
∑
j l

Im
(
Cl∇αC∗

jFBO
jl,α

)− A2
α(R, t)

⎞
⎠ (65)

(the expansion of the last term A2
α may be obtained from

Eq. (63)). Notice that all the BO surfaces, as well as non-
adiabatic couplings, are contained in the the exact TDPES.

C. Electron-nuclear correlation

The TDPES and Berry connection discussed in
Secs. III A and III B directly determine the evolution of the
nuclear wavefunction (Eq. (29)), containing the effect of cou-
pling to the electrons in an exact way. The electron-nuclear
coupling term Û

coup
en enters the nuclear equation indirectly

via its role in determining 
R through Eqs. (28) and (30).

Equation (31) expresses Û
coup
en as a functional of the electronic

and nuclear wavefunctions, and now we shall derive another
expression for it that shows that it measures the difference
between the nuclear kinetic energy evaluated from the full
wavefunction and that evaluated on the nuclear wavefunction.
We isolate the term involving Û

coup
en in Eq. (28), and insert


R = �/χ . This leads to

Û
coup
en 
R


R
= i∂t�

�
− i∂tχ

χ
−

ĤBO
R


R
− V̂ e

ext + ε(R, t).

(66)
Next we insert in Eq. (66) the TDSE (10) and Eq. (29),
satisfied by � and χ to obtain

Û
coup
en [
R, χ ]
R(r, t)


R(r, t)
= T̂n�

�
−

ˆ̃Tnχ

χ
, (67)

where

ˆ̃Tn =
Nn∑

α=1

1

2Mα

(−i∇α + Aα(R, t))2. (68)

Multiplying Eq. (67) by |
R|2|χ |2 and integrating over all
coordinates leads to

〈�|T̂n|�〉r,R−〈χ | ˆ̃Tn|χ〉R =
∫

dR|χ (R, t)|2〈
R|Û coup
en |
R〉r.

(69)
This means the nuclear kinetic energy evaluated from the
full molecular wavefunction, and that evaluated via the ex-
pectation value of the nuclear kinetic energy operator in
Eq. (29) on the nuclear wavefunction are not equal: their dif-
ference is given by the nuclear-density-weighted integral of
the electron-nuclear coupling potential.

IV. MODEL OF H+
2 IN A LASER FIELD

In this section, we illustrate the usefulness of the TDPES
using a simple, numerically exactly solvable model: the H+

2

molecular ion subject to a linearly polarized laser field. By re-
stricting the motion of the nuclei and the electron to the direc-
tion of the polarization axis of the laser field, the problem can
be modeled with a 1D Hamiltonian featuring “soft-Coulomb”
interactions33–37

Ĥ (t) = − 1

M

∂2

∂R2
− 1

2μe

∂2

∂x2
+ 1√

0.03 + R2
+ V̂l(x, t)

− 1√
1 + (x − R/2)2

− 1√
1 + (x + R/2)2

, (70)

where R and x are the internuclear distance and the elec-
tronic coordinate as measured from the nuclear center-of-
mass, respectively, and the electronic reduced mass is given
by μe = (2M)/(2M + 1), M being the proton mass. The
laser field is represented by V̂l(x, t) = qexE(t), where E(t)
denotes the electric field amplitude and the reduced charge
qe = (2M + 2)/(2M + 1). One-dimensional soft-Coulomb
atoms and molecules have proven extremely useful in the
study of strong-field dynamics since they allow numerically
accurate solutions to problems involving correlated electron
dynamics as well as correlated electron-nuclear dynamics that
would be computationally far more demanding for the full
three-dimensional atoms and molecules, while capturing the
essential physics of the latter, e.g., multi-photon ionization,
above-threshold ionization and dissociation, enhanced ioniza-
tion, non-sequential double-ionization, high-harmonic gener-
ation, and non-BO effects (e.g., Refs. 7 and 35–41). We study
the dynamics of the model H+

2 system under a λ = 228 nm
(5.4 eV) UV-laser pulse, which is represented by

E(t) = E0f (t) sin(ωt), (71)

with two peak intensities, I1 = |E0|2 = 1014 W/cm2 and
I2 = |E0|2 = 2.5 × 1013 W/cm2. With this frequency, an en-
ergy that is about twice as much as the dissociation energy of
the model molecule (2.8782 eV) is achieved, so dissociation
is expected. The envelope function f(t) is chosen such that the
field is linearly ramped from zero to its maximum strength at
t = Tramp and thereafter held constant (Fig. 1)

f (t) =
{

t/Tramp 0 < t < Tramp

1 Tramp < t < Ttot

. (72)

The rise-time was chosen as Tramp = 10τ while the total simu-
lation time was Ttot = 25τ , where τ = 2π

ω
denotes the optical

cycle.
The same system and parameters were studied in

Ref. 37 where the importance of electron-nuclear correlation
was highlighted: a two-configuration correlated ansatz for
the time-dependent electron-nuclear wavefunction was able
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FIG. 1. λ = 228 nm laser field, represented by E(t) = E0f(t)sin (ωt),
for two peak intensities, I1 = |E0|2 = 1014 W/cm2 and I2 = |E0|2 = 2.5
× 1013 W/cm2. The envelope function f(t) is chosen such that the field is
linearly ramped from zero to its maximum strength at t = 7.6 fs and there-
after held constant. The highlighted area represents the optical cycle that will
be focussed on in later graphs.

to describe photodissociation processes in many cases, while
a simple uncorrelated Hartree product of an electronic and
a nuclear wavefunction almost always failed. In the present
work, we analyse the dynamics via the numerically exact TD-
PES, finding it very useful in understanding and interpreting
the motion. We note that the laser-field does not couple di-
rectly to the nuclear relative coordinate R, but only indirectly
via the TDPES.

Starting from the exact ground-state as initial condition,
we propagate the TDSE numerically, using the second-order
split-operator method,42 to obtain the full molecular wave-
function �(x, R, t). As there is only one nuclear degree of
freedom (after separating off the center-of-mass motion), we
can fix the gauge in Eqs. (44)−(45) such that the vector poten-
tial (59) vanishes identically. For one-dimensional problems,
this is always possible with the choice

d

dR
S(R, t) = Im

∫
dx�∗(x,R, t) d�(x,R,t)

dR

|χ (R, t)|2 . (73)

So we can calculate S(R, t), the phase of the nuclear wave-
function, as well as |χ (R, t)|2, the nuclear density, from the
computed exact time-dependent molecular wavefunction. Be-
ing equipped with the nuclear wave-function, χ (R, t) (= |χ (R,
t)|eiS(R, t)) , we then compute the TDPES by inverting the nu-
clear equation of motion (29).

We will compare the exact dynamics with the fol-
lowing three approximations: (i) the usual Ehrenfest ap-
proximation, where the nuclei are treated via classical dy-
namics, evolving under the force −∇VEhr = −∇RWnn(R)
− ∫ drn(r, t)∇RWen(r, R), with n(r, t) being the one-body
electron density, (ii) the “exact-Ehrenfest” approximation,
which substitutes the exact TDPES for the Ehrenfest poten-
tial VEhr in the usual Ehrenfest approach, and (iii) an uncor-
related approach, the time-dependent Hartree (self-consistent
field) approximation, �H(r, R, t) = φ(r, t)χ (R, t), where the
electronic part does not depend on R at all. This includes
a quantum treatment of the nuclei, but no electron-nuclear
correlation.

A. High intensity: I1 = 1014 W/cm2

The exact TDPES, along with the corresponding nuclear
density, |χ (R, t)|2, are plotted in Fig. 2 at six snapshots of
time. The initial TDPES lies practically on top of the ground-
state BO surface, plotted in all the snapshots for comparison.

FIG. 2. Snapshots of the TDPES (blue solid lines) and nuclear density (black
solid lines) at times indicated, for the H+

2 molecule subject to the laser-field
with the peak intensity I1 = 1014 W/cm2. The solid circles indicate the po-
sition and energy of the classical particle in the exact-Ehrenfest calculation.
For reference, the ground-state BO surface (red dashed lines) is shown.

The dissociation of the molecule is dramatically reflected
in the exact TDPES, whose well flattens out, causing the nu-
clear density to spill to larger separations. Importantly, the
tail of the TDPES alternately falls sharply and returns in cor-
respondence with the field, letting the density out; the TDPES
is the only potential acting on the nuclear system and transfers
energy from the accelerated electron to the nuclei.

In Fig. 3, we focus on six equally-spaced time snap-
shots during the optical cycle shaded in Fig. 1. The lower
panel shows the TDPES, with its characteristic oscillations,
along with the nuclear density as a function of the inter-
nuclear coordinate, |χ (R, t)|2. The upper panel shows a
color map of the conditional electronic probability density,

FIG. 3. Snapshots of the TDPES (blue lines), nuclear density (black), and
the electronic conditional-density (color map) at times indicated during an
optical cycle, for the H+

2 molecule subject to the laser-field with the peak
intensity I1 = 1014 W/cm2. For reference, the ground-state BO surface is
shown as the red line.
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FIG. 4. Snapshots of the total electron-nuclear density at times indicated dur-
ing an optical cycle, for the H+

2 molecule subject to the laser-field with the
peak intensity I1 = 1014 W/cm2.

|
R(x, t)|2, i.e., the probability of finding an electron at x
at a fixed nuclear separation R. While at small internuclear
distances (around and below the equilibrium separation), the
electron remains localized in the middle between the two nu-
clei, at larger separations one clearly sees the preferential lo-
calization of the electron density near the two nuclei, i.e.,
on one side or the other. At even larger separations, we see
streaks of ionizing electron density in both directions. For the
full story, we must multiply the conditional probability den-
sity of the upper panels with the nuclear density shown in the
lower panel, to obtain the total electron-nuclear density; this
is shown in Figure 4, indicating the probability of finding, at
the time indicated, an electron at position x and the nuclear
separation R.

The top left-hand panel of Fig. 5 shows the expectation
value of the internuclear distance

〈R̂〉 = 〈�(t)| R̂ |�(t)〉, (74)

along with the results from the three approximate methods
described earlier. The lower left-hand panel shows the ioniza-
tion probabilities. In principle, the latter requires projections
of the full wavefunction on all continuum states, which, in
practice, are difficult to calculate. Alternatively, we use a ge-
ometrical concept,47 according to which the total ionization

FIG. 5. Dissociation and ionization for intensity I1 (left) and I2 (right).
Top panels: the internuclear separation 〈R〉(t). Lower panels: the ionization
probability.

probabilities can be obtained from

Pion(t) = 1 −
∫

boxe

dx

(∫
dR|�(t)|2

)
. (75)

The electrons leaving the “electronic analyzing box” (boxe)
are thereby identified with ionized electrons. The ionization
box here was chosen to be |x| ≤ 10. The internuclear distance
together with the ionization probability support a Coulomb-
explosion interpretation of the dissociation: first, the system
begins to ionize, then the nuclei begin to rapidly move apart
under their mutual Coulomb repulsion increasingly sensed
due to weaker screening by the reduced electron density.
Turning now to the approximations, we observe that all the
methods yield dissociation and some ionization. The expec-
tation value of the internuclear distance in Fig. 5, demon-
strates that among all the approximate calculations employed
here, the exact-Ehrenfest is most accurate. Referring back to
Figure 2: the solid circles indicate the classical nuclear posi-
tion and energy of a particle driven by the exact-Ehrenfest
force. One can see that it rapidly picks up kinetic energy
above the TDPES, supporting the fact that the nuclear dis-
sociation mechanism is an essentially classical one in this
case. The exact-Ehrenfest calculation even does better than
TD-Hartree, which treats the protons quantum mechanically,
thus showing the overarching importance of electron-nuclear
correlation in this case.

In fact, the Hartree description is worse than it may
seem from just looking at the internuclear separation in
Fig. 5. In Figure 6, we plot the time-dependent Hartree poten-
tial energy surface and Hartree nuclear-density. Both are dra-
matically different from the exact TDPES and exact nuclear
density of Figure 2. At the initial time, the Hartree poten-
tial is reasonably good near equilibrium but poor at large
separations:37 this is a consequence of the conditional elec-
tron probability being independent of the nuclear coordinate,
and therefore only yielding a realistic result where the en-
ergy is optimized, which is at equilibrium separation. As time
evolves the minimum of the Hartree surface moves out and

FIG. 6. Snapshots of the time-dependent Hartree nuclear-potential (blue
lines) and nuclear density (black) at times indicated, for the H+

2 molecule
subject to the laser-field with the peak intensity I1 = 1014 W/cm2. For refer-
ence, the ground-state BO surface is shown as the red line.
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FIG. 7. Snapshots of the TDPES (blue) and nuclear density (black) at times
indicated, for the H+

2 molecule subject to the laser-field with the peak inten-
sity I2 = 2.5 × 1013 W/cm2. The solid circles indicate the position and energy
of the classical particle in the exact-Ehrenfest calculation. For reference, the
ground-state BO surface (dashed red) is shown.

begins to widen, cradling the nuclear density, which more or
less retains its Gaussian shape, unlike the exact density; only
at larger times does the surface open out.

B. Lower intensity: I2 = 2.5 × 1013 W/cm2

We now consider the dynamics under a field of weaker in-
tensity. Figure 7 plots the TDPES, whose tail displays similar
oscillations as in the higher intensity case. The nuclear den-
sity appears to leak out to larger separations, although more
slowly than in the previous case; indeed from the right panels
in Fig. 5, we see that the exact calculation leads to dissocia-
tion. However, Fig. 5 (upper right panel) also shows that none
of the approximations dissociates, in contrast to the previous
case. The Hartree and Ehrenfest methods also show negligi-
ble ionization, compared to the exact case; but even in the
exact case, the ionization probability is very small, indicat-
ing a different mechanism of dissociation than in the stronger
field case. It may be at first surprising that the exact-Ehrenfest
calculation does not dissociate the molecule, given that it is
based on the exact TDPES, however an examination of clas-
sical dynamics in the TDPES of Fig. 2 can explain what is
happening. The solid dot in Fig. 2 indicates the classical po-
sition and energy, and we see that it is always trapped inside
a well in the TDPES that remains at all times. This suggests
that tunneling is the leading mechanism for the dissociation:
a classical particle can only oscillate inside the well, while
a quantum particle may tunnel out, as indeed reflected in
Fig. 5. Although the tail has similar oscillations as for I1,
this does not lead to the dissociation of classical nuclei
due to the barrier; the TDPES in this case transfers the
field energy to the nuclei via tunneling. Although the exact-
Ehrenfest calculation shows a larger amplitude of oscilla-
tion than the others, it ultimately cannot tunnel through the
barrier.

As in the previous case, we plot in the top panels of Fig. 8
the electronic conditional density |
R(x, t)|2 over one optical

FIG. 8. Snapshots of the TDPES (blue lines), nuclear density (black), and
the electronic conditional-density (color map) at times indicated during an
optical cycle, for the H+

2 molecule subject to the laser-field with the peak
intensity I2 = 2.5 × 1013 W/cm2 . For reference, the ground-state BO surface
is shown as the dashed red line.

cycle, while the lower panels illustrate again the opening and
closing of the TDPES as the field oscillates. Like in the pre-
vious case, for small R near equilibrium, the electron density
is localized in between the nuclei, while for larger R, there
is some polarization towards one side or the other. To get the
full picture, one must multiply the top panels by the nuclear
density |χ (R, t)|2, to obtain the total electron-nuclear proba-
bility density, shown in Figure 9. It is evident in this graph
that there is much less ionization than in the previous case,
and the dissociation is slower.

Although the Hartree approximation treats the nuclei
quantum mechanically, and therefore allowing tunneling in
principle, tunneling and dissociation do not actually occur.
The reason for this is clear from the shape of the Hartree
potential, plotted in Fig. 10: the Hartree potential essen-
tially retains its initial shape at all times, making very
small oscillations near the equilibrium separation. As in the
more intense field case, this is due to its uncorrelated treat-
ment of the electron-nuclear system: the electronic wave-
function at any nuclear configuration is always the same,
and is best at equilibrium since initially it is determined by

FIG. 9. Snapshots of the total electron-nuclear density at times indicated dur-
ing an optical cycle, for the H+

2 molecule subject to the laser-field with the
peak I2 = 2.5 × 1013 W/cm2.
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FIG. 10. Snapshots of the time-dependent Hartree nuclear-potential (blue
lines) and nuclear density (black) at times indicated, for the H+

2 molecule
subject to the laser-field with the peak intensity I1 = 1014 W/cm2 I2 = 2.5
× 1013 W/cm2. For reference, the ground-state BO surface is shown as the
dashed red line.

energy-optimization, from where it does not deviate far, due
to the weak field strength. Unlike in the stronger field case,
the Hartree surface never opens out. Dissociation via tun-
neling requires both a quantum mechanical description of
the nuclei and an adequate accounting of electron-nuclear
correlation.

We do not expect the TDPES to be so different from the
BO surfaces in all cases. For example, in the case of field-
free vibrational dynamics of the H+

2 molecule, where we start
with a nuclear wavepacket displaced from equilibrium on the
ground BO surface, we find the TDPES follows closely the
BO surface throughout. The non-adiabatic couplings are weak
in this case. The TDPES for field-free dynamics in other sys-
tems with stronger non-adiabatic couplings will be published
elsewhere.43

The purpose of comparing the exact results with
these methods (TD-Hartree, Ehrenfest, and exact-Ehrenfest)
was primarily to support the conclusions drawn from the
exact TDPES regarding the dissociation mechanisms. An
interesting question is how well do the more accurate ap-
proximate PES’s proposed recently (e.g., Ref. 16) com-
pare with the exact TDPES; this will be investigated in the
future.

V. CONCLUSIONS

In this paper, we have shown that there exists a rigor-
ous factorization of the exact molecular wavefunction into
a nuclear wavefunction and electronic wavefunction, each of
which retains the usual probabilistic meaning. The exact nu-
clear Nn-body density is |χ (R, t)|2 while |
R(r, t)|2 repre-
sents the conditional probability of finding the electrons at
r, given the nuclear configuration R. Equations (28)–(33) are
the equations of motion that the electronic wavefunction and
nuclear wavefunction satisfy, and show explicitly how the
electronic and nuclear systems are exactly coupled. These
equations enable the time-dependent potential energy surface

(Eq. (32)) and the time-dependent Berry connection (Eq. (33))
to be defined as rigorous concepts, and we have discussed
some general properties of them, and of the electron-nuclear
coupling operator Eq. (31).

The example of the one-dimensional H+
2 molecule in

an oscillating electric field, solved numerically accurately,
demonstrated that the TDPES is a powerful tool to analyze
and interpret different types of dissociation processes. By
studying the shape and evolution of the TDPES, comparing
classical dynamics in this exact potential to the exact quan-
tum dynamics, we were able to distinguish whether the dis-
sociation proceeded via nuclear tunneling or more directly
in Coulomb-explosion. For this example, the TDPES is the
only potential determining the nuclear dynamics, exactly con-
taining the coupling with electronic dynamics. The example
demonstrated the importance of capturing both quantum ef-
fects in nuclear motion and electron-nuclear coupling; the
Hartree approach, for example, despite treating the nuclei
quantum mechanically, was unable to capture dissociation via
tunneling as the shape of its potential surface was completely
wrong. Thus, the TDPES, and in more general cases than the
one studied here, the geometric phase, can be very useful in-
terpretative tools for dynamics. The calculation of a TDPES
has quite some history in the strong-field community, and sev-
eral possible definitions of TDPES have been proposed in the
literature. The crucial point of our work is that it provides
a unique definition of TDPES (unique up to within a gauge
transformation): if one wants the TD many-body Schrödinger
equation (29) to give the correct N-body density and current
density of the nuclei, then the scalar potential and the vec-
tor potential must be given by Eqs. (32) and (33). There is
no choice apart from the gauge. That means that with any
advanced technique that yields the TD molecular wavefunc-
tion �(r, R, t) one can evaluate the TDPES and Berry po-
tential by first calculating the factors from Eqs. (25)−(26)
and then evaluating the TDPES and Berry potential from
Eqs. (32)−(33).

From a practical point of view, Eqs. (28)−(33) are not
easier to solve than the time-dependent Schroedinger equa-
tion for the full electron-nuclear system. Rather, they form
the rigorous starting point for making approximations, es-
pecially for the systematic development of semiclassical
approximations. In the large-nuclear mass limit, the elec-
tronic equation reduces to Cederbaum’s time-dependent BO
approximation.1, 18 Taking the classical limit for the nuclei
in the large-mass limit, one retrieves the Ehrenfest equations
with Berry potential1 (see also Refs. 48 and 49). Treating
the nuclei classically but retaining their finite mass, one finds
corrections to the Ehrenfest equations that better account for
non-adiabatic transitions.50 A direction for future research
is to capture some nuclear quantum effects by a semiclassi-
cal or quasiclassical procedure,51, 52 built on the exact foun-
dational equations presented here. Another direction would
be to use the formalism as a possible starting point to de-
velop electron-nuclear correlation functionals in a density-
functionalized version of the electron-nuclear problem.46 A
promising route is to develop a time-dependent generalisa-
tion of the optimized effective potential scheme proposed in
Ref. 20.
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