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Paramagnons in FeSe close to a magnetic quantum phase transition: Ab initio study
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The magnetic excitations in FeSe are studied from first principles applying linear response density functional
theory. The position of the selenide layer is varied to model the transition between paramagnetic and
antiferromagnetic phases. In the paramagnetic phase, close to the magnetic instability, we find a branch of
long-lived collective spin excitations (paramagnons). An estimation of the paramagnon-mediated effective
electron-electron interaction supports the scenario of Cooper pairing in FeSe induced by spin fluctuations.
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Introduction. The discovery of high-temperature supercon-
ductivity in LaFeAsO1−xFx (Ref. 1) induced a great deal
of experimental and theoretical interest for the iron-based
“pnictide” family of superconductors. Among the pnictides
the 11 type2 has the simplest structure and can be considered
as the parent compound of the superconducting arsenide
family.2 These compounds consist of square planar sheets of
Fe with chalcogen atoms (either sulfur, selenium, or tellurium)
forming distorted tetrahedrons around the Fe atoms. The
electronic structure of the 11 compounds is very similar to
the one of Fe-As based superconductors3 which have a much
larger chemical unit cell. In the 11 type only FeSe shows
superconductivity (SC) without doping. The Tc of FeSe is with
9K rather small, but it is strongly enhanced by pressure (Tc ≈
37 K at 2 GPa);4 the application of pressure intensifies also
the antiferromagnetic (AFM) spin fluctuations,5 indicating a
connection between spin excitations and superconductivity.

The small unit cell, the similarities to the Fe-As compounds
in the electronic structure, and the presence of supercon-
ductivity without doping make FeSe an ideal benchmark
system to study the Fe-based superconductors. A theoretical
approach to superconductivity considering only electron-
phonon coupling as the Cooper-pairing mechanism predicts
critical temperatures of less than 1K for these materials.6

This points to an alternative pairing mechanism present in the
family.7 A compelling model was suggested by Mazin et al.,
who considered a pairing mediated by AFM spin fluctuations
(SFs).7

The present work reports an ab initiostudy of the magnetic
excitations in both paramagnetic (PM) and antiferromagnetic
phases of FeSe. We show that close to the point of the magnetic
phase transition a branch of intense, long-living paramagnons
is formed. We analyze the nature of the excitations and make
an estimation of an effective electron-electron interaction
mediated by these excitations.

Methods. The fluctuations in the PM phase are studied
using the longitudinal dynamic spin susceptibility χzz(rr′qω)
describing the spin response of the system to an external
magnetic field. Here qω are the wave vector and the frequency
of both the applied field and induced magnetization. The vector
q varies within the first BZ and determines the transformation
of the quantities under application of the lattice translations.
The vectors r and r′ are inside the unit cell. Note that in a PM
system χzz = χyy = χxx and the induced magnetization is al-
ways parallel to the external magnetic field. The susceptibility
is calculated using linear-response-density-functional theory

(LRDFT)8 implemented in a Korringa-Kohn-Rostoker (KKR)
multiple scattering code.9 To describe the dependence on r,r′
a basis composed of products of the Chebyshev polynomials
and spherical harmonics is used.10 In the following, the
susceptibilities are assumed to be represented by the matrices
in this basis. As a first step the noninteracting Kohn-Sham (KS)
susceptibility χKS

zz (rr′qω) is calculated as an autoconvolution
of the KKR Green’s function. Then the Dyson equation
of LRDFT is solved using the adiabatic local spin density
approximation (ALSDA) for the exchange-correlation (xc)
kernel f xc(rr′qω) ≈ δrr′f ALSDA(r):

χzz = χKS
zz + χKS

zz f xcχzz. (1)

The calculations are performed for complex frequencies,
followed by an analytic continuation to the real frequency
axis.10 Finite values of Im χKS

zz indicate the presence of
single particle (Stoner) excitations, whereas peaks of Im χzz

yield information about energies and lifetimes of collective
excitations. In analogy to magnons, the collective excitations
in magnetically ordered systems, the collective excitations in
PM are referred to as paramagnons. Although the main focus
of the Rapid Communication is on the SFs in the PM phase, for
the sake of comparison we present also the spectrum of AFM
magnons obtained by mapping the system on the Heisenberg
Hamiltonian of interacting atomic moments.11

Magnetic excitations. Experimentally FeSe is a PM metal.4

The crystal symmetry does not require a specific distance zSe

of the Se layers with respect to the Fe layers. Our calculations
reveal a very strong dependence of the electronic properties
of the system on the value of zSe, which is demonstrated in
Fig. 1 by the dramatic variations of the Fermi surface (FS).
Also the magnetic state changes from PM at low zSe to AFM
at larger values of this parameter. This indicates a proximity
of the experimentally observed PM phase to a magnetic state.
We use the sensitivity to zSe to investigate the variation of the
SFs while approaching the magnetic critical point.

Experimentally12 also a small ( b−a
b

≈ 0.2% for 0.25 GPa)
orthorhombic distortion is observed, which is increasing with
pressure ( b−a

b
≈ 0.7% for 12 GPa). Our test calculations for

pressures ranging between 0 and 12 GPa indicate no change in
the equilibrium zSe and critical magnetic zSe, if the distortions
are taken into account. Hence, all the presented calculations
are performed for the tetragonal crystal structure (a = b).

The evolution towards the magnetic instability is demon-
strated in the map of the static nonuniform KS susceptibility
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FIG. 1. (Color online) Fermi surface of FeSe for two values of zSe.

calculated for nonmagnetic FeSe. To distinguish the instabili-
ties with respect to the formation of various magnetic structures
we consider the Fourier component of the susceptibility, i.e.,
χKS

zz (Q) = ∫ ∫
d3rd3r ′e−iQ(r−r′)χKS

zz (rr′) (Fig. 2). The vector
Q varies both inside (M → X) and outside (X → G) of the
first BZ of the paramagnetic FeSe. The point � (Q = 0)
in Fig. 2 corresponds to the FM structure while the points
M and G correspond to the antiferromagnetic structures of
respectively stripe and checkerboard types (Fig. 3). For small
zSe a large magnetic response is obtained for wave vectors close
to � that specifies strong ferromagnetic fluctuations. With
increasing zSe the fluctuations weaken for all Q values. Nearing
the experimental zSe, the susceptibility increases again. This
time, however, the increase is strongest around the M point
and between the X and G points.

The results of the spin-polarized self-consistent calculations
for the stripe and checkerboard magnetic structures are
presented in Fig. 3. In agreement with the picture given by
the static susceptibility (Fig. 2), the system becomes magnetic
above a certain critical value of zSe. The lowest critical value
of 1.18 Å is found for the stripe ordering (QM ). The isoline
in the KS-susceptibility map (Fig. 2) begins at this critical
point and shows that for the structures with other wave vectors
the transition to the magnetic state takes place for larger zSe.
The large magnetic susceptibility at the M point for values
of zSe above 0.88Å can be related to the presence of the
sheets of the paramagnetic FS centered around � and M

points. The magnetic field with wave vector QM leads to a

FIG. 2. (Color online) Fourier component of the static nonuni-
form spin susceptibility for different wave vectors Q and zSe. The
coordinates of the symmetry points are M = ( π

a
, π

a
,0), X = ( π

a
,0,0),

and G = ( 2π

a
,0,0).

FIG. 3. (Color online) Left: Fe spin moment as a function of zSe

for checkerboard and stripe magnetic structures. Right: Schematic
picture of the critical (crit) and equilibrium (eq) Se positions for two
different pressures P1 and P2 (P1 < P2).

strong hybridization between two groups of states that results
in considerable contribution to the induced moment.

Note that the calculated critical value of zSe is smaller
than the experimental13 zSe, demonstrating that the LSDA
calculations underestimate the critical zSe in the case of
FeSe. A possible explanation for the difference between the
theoretical and experimental magnetic ground states for the
experimental value of zSe is the influence of zero-temperature
SFs. These fluctuations are not taken into account in the LSDA
functional, while close to the point of a magnetic instability
they become of fundamental importance.14 It is not the purpose
of this work to improve the description of the magnetic ground
state by means of the account for zero-temperature SFs.
This is an important nontrivial problem demanding separate
consideration.

The identification of the eigenmodes of spin excitations
can be performed through the diagonalization of the loss
matrix, χL = i

2 (χ − χ †).10 A nonzero eigenvalue νλ of χL

at a given qω signifies the presence of an excited spin state
with this momentum and energy, whereas the corresponding
eigenvector ξλ gives the shape of the associated oscillating
magnetization density. In Fig. 4 we show the largest eigenvalue
of the loss matrix.

Far from the critical point (zSe = 0.662 Å), the eigenvalues
of both the KS and enhanced loss matrix are small [Figs. 4(a)
and 4(b)]. Coming closer to the magnetic instability (zSe =
0.994 Å) the spectrum of the KS loss matrix changes strongly,
showing a characteristic peaked structure of intense Stoner
excitations. For low frequencies the intense excitations are
shown at small wave vectors close to the � point. With
increasing frequency the peaks move to larger momenta.
Also the spectrum of the enhanced susceptibility evolves.
Here the emerging peaks signify the formation of collective
excitations [Fig. 4(d)]. The step to zSe = 1.104 Å does not
lead to a strong change in the spectral structure of the KS loss
matrix [cf. Figs. 4(c) and 4(e)]. The effect on the enhanced
susceptibility spectrum is, however, very strong [cf. Figs. 4(d)
and 4(f)], revealing the sensitivity of the collective modes to
the details of the electronic structure. The system nears now the
quantum critical point and features intense spin fluctuations.
The peaks correspond to collective spin excitations in the
PM phase, i.e., the paramagnons. Note that the long-lived
paramagnons form in the region of the q-ω plane, where the
density of Stoner excitations is low. A similar effect is known
for the magnon excitations in magnetically ordered systems:
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FIG. 4. (Color online) Spectral function for Stoner and collective
excitations for three different zSe in the PM phase. Corresponding real
parts of the susceptibilities are given in the Supplemental Material
(Ref. 15).

Long-living magnons can form only in the region of the q-ω
plane with low intensity of Stoner transitions.10

The inspection of the spectrum [Fig. 4(f)] shows that
no paramagnons form below 160meV. This feature reveals
a principal difference between magnons and paramagnons.
Due to the spontaneously broken spin rotational symmetry
in ordered magnets, the magnons satisfy the condition of
the Goldstone theorem, this means that at least one magnon
mode evolves from the point |q| = ω = 0. On the other hand,
paramagnons are longitudinal fluctuations and a Goldstone
mode does not form. The magnon spectrum calculated for
the stripe AFM structure with four Fe atoms in the unit cell
is shown in Fig. 5. The two magnon branches are double
degenerate. As mentioned above, the magnons satisfy the
Goldstone theorem and, therefore, there is a branch with
magnon energy tending to 0 for |q| → 0.

To better understand the nature of the excitations in
the PM phase, we consider the spatial distribution of the
magnetization corresponding to the paramagnons (Fig. 6). This
information is straightforwardly obtained from the analysis
of the eigenvectors ξλ of the loss matrix. The magnetization
for three q vectors corresponding to the high symmetry
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FIG. 5. (Color online) Magnon spectrum in the AFM phase.

points is shown in Fig. 6. In general, the spin magnetization
is predominantly localized around Fe atoms. Therefore the
properties of the paramagnons can be discussed in terms of
magnetic moments mz

i associated with Fe atoms. The variation
of mz

i is proportional to cos[ωqt + φq(rFe
i ) + qT], where ωq is

the frequency and φq(rFe
i ) the phase of the paramagnon. The

rFe
i (i = 1,2) are the positions of Fe atoms within the unit cell

and T is a lattice translation.
For the lowest-energy paramagnon corresponding to the

M point the Fe moments oscillate in phase, i.e., �φqM
=

φqM
(rFe

1 ) − φqM
(rFe

2 ) = 0. The distribution of the moments at
different atoms reflects the stripe AFM structure [Fig. 6(a)].
For the paramagnon at the X point the oscillations on the
two Fe sites are out of phase by 90◦ [Fig. 6(c)]. In analogy
with phonons, we can refer to the excitations with smaller
phase between the moments as acoustic paramagnons and to
the excitations with larger phase as optical paramagnons. The
high-energy paramagnon corresponding to the � point has an

FIG. 6. (Color online) The spatial distribution of spin magneti-
zation for three paramagnons corresponding to wave vectors of high
symmetry.
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optical character (�φq�
= 180◦) and reflects the checkerboard

AFM structure [Fig. 6(b)].
Recently inelastic neutron scattering measurements were

reported for FeTe1−xSex .16 Our current code implementation
does not allow the study of disordered alloys. We notice,
however, an important qualitative correlation between our
results for FeSe and the measurements for FeTe1−xSex . In
agreement with our calculations, the paramagnons detected
for wave vectors (qM,qX,qG) show the same order of energies,
ωqM

< ωqX
< ωqG

.
A problem of high importance is the physical mech-

anism behind the strong increase of the superconducting
transition temperature with applied pressure.4 Obviously,
before a consistent microscopic theory of the unconventional
superconductivity is developed, a quantitative parameter-free
description of this effect cannot be done. On the qualitative
level, the increase of Tc is expected to be connected with
further enhancement of the spin fluctuations, which is also
indicated by experiment.4

Note that there are contradictory experimental data on the
pressure dependence of zSe: While some experimentalists17,18

argue to detect zSe increasing with pressure, others12 report
an opposite trend. In terms of our model, with increasing
pressure the position of the Se atoms should become closer
to the critical value of zSe. Our calculations show that both
the equilibrium zSe and the critical magnetic zSe increase
with pressure. However, the effect on the equilibrium po-
sition is larger than on the critical value. This suggests
the qualitative picture of the pressure dependence of the
relative positions of the equilibrium and critical zSe shown
in Fig. 3. Since for increased pressure the zSe becomes closer
to the critical position, the low-energy spin fluctuations are
enhanced.

Effective interaction. All standard approaches to SC lead to
an equation for the so-called SC gap function �k that is the
order parameter of the SC phase. A possible mechanism of the
Cooper pairing in unconventional SC involves the competition

between two effects: electron-electron interaction mediated by
spin fluctuations and the electrostatic Coulomb repulsion.19

The two interactions enter the equation for �k. The insight into
the SFs discussed above allows an estimation of the strength
of the interaction mediated by these fluctuations. Vignale and
Singwi20 suggested an expression for the electron-electron
interaction by means of SFs,

U↑↓(q) = 2

π
f xc(q)

∫
dω

Im[χzz(qω)]

ω
f xc(q). (2)

To estimate the value of the interaction we evaluate matrix
elements of U↑↓ with respect to the KS wave functions. The
largest matrix elements are obtained for momentum transfer
close to qM corresponding to the lowest-energy paramagnon
excitations [Fig. 4(f)]. The maximal estimated value is
∼0.8 eV. It corresponds to the electron scattering between the
pocket and the barrel pieces of the FM (Fig. 1). The competing
Coulomb repulsion is large for small momentum transfer. For
intraband scattering within the pocket FS the matrix element
has a value of ∼0.9 eV. These estimations give the same order
of magnitude for the two interactions supporting the scenario
of Cooper pairing mediated by SFs.

Summary. We report a first-principles study of the magnetic
excitations in FeSe for both PM and AFM phases. The
position of the selenide layer is varied to model the quantum
phase transition PM↔AFM. In the paramagnetic phase, close
to the magnetic instability, we find a branch of long-lived
paramagnons. We discuss the properties of the paramagnons
and contrast them to the properties of the collective spin
excitations in magnetically ordered systems. The strength of
the effective electron-electron interaction mediated by param-
agnons is estimated to be of the same order of magnitude as
the screened Coulomb interaction. This supports the proposed
by Mazin et al.7 of the paramagnon-driven superconductivity
with a s± gap symmetry.
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