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FIG. 9. (Color online) Photoelectron angle- and energy-resolved
probability P̄ (E,θ ) (log scale) in the laboratory frame for randomly
oriented N2 molecules in a 6 cycles infrared laser pulse with
λ = 750 nm, with intensity I = 4.3 × 1013W/cm2. The angle θ

is measured from the laser polarization axis. The different panels
represent P̄ (E,θ ) (spanning 3.4 orders of magnitude), from (a)
experiment, (b) calculated with TDDFT and FMM, and (c) calculated
with modified molecular strong-field approximation. Panels (a) and
(c) are adapted from Ref. [28].

according to experiment [28], i.e., we employ a Nc = 6 cycle
pulse of wavelength λ = 750 nm (ω = 0.06 a.u.) and intensity
I = 4.3 × 1013 W/cm2. A laser shape

A(t) =
{

A0
2

(
1 − cos

(
ωt
Nc

))
sin(ωt) if 0 � t � 2πNc/ω,

0 if t > 2πNc/ω

(22)

for the vector potential should lead to an electric field similar to
the one employed in the experiment with zero carrier envelope
phase.

In Fig. 9(a) the experimental photoelectron probability
P̄ (E,θ ) is plotted in logarithmic scale as a function of the
energy and the angle with respect to the laser polarization in the
laboratory frame. Electrons are mainly emitted at small angles
and, due to the short nature of the pulse electron emission, are
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FIG. 10. (Color online) Photoelectron angle- and energy-resolved
probability PθL

(E,θ ) (log scale) for aligned N2 molecules and
different laser polarization directions θL: (a) θL = 90◦, (b) θL = 60◦,
(c) θL = 30◦, and (d) θL = 0◦. Here θL is the angle between the laser
polarization direction and the molecular axis. Laser parameters are
the same as in Fig. 9.

asymmetric along the laser polarization axis (at angles close
to 0◦ and 180◦).

We performed TDDFT calculations for different angles θL

between the molecular axis and the laser polarization. The
molecular geometry was set at the experimental equilibrium
interatomic distance R0 = 2.074 a.u. The Kohn-Sham wave
functions were expanded in real space with spacing �r =
0.38 a.u. in a simulation box of RA = 35 a.u. The photoelectron
spectra were calculated with FMM having RC = 25 a.u., and
padding factors P = 1 and PN = 4.

In Fig. 10 the logarithmic ionization probability PθL
(E,θ )

is plotted as a function of energy E and angle θ measured
from the laser polarization axis for different values of θL. As
the molecular orientation decreases from 90◦ � θL � 30◦ we
observe an increasing suppression of the emission together
with a shift of the maximum that moves away from the
laser polarization axis. For θL = 0◦ the emission is highly
enhanced for all angles and peaked along the laser direction.
The signature of multicenter emission interference has been
predicted to be particularly marked when the laser polarization
is perpendicular to the molecular axis [61,62] (i.e., θL = 90◦).
However, the lowest point in energy of such a pattern is
predicted for θ = 90◦ and E = π2/2R2

0 ≈ 31 eV, way above
the energy window of observable photoelectrons produced by
our laser. A stronger and longer laser pulse would be required
to extend the rescattering plateau toward higher energies and
therefore to reveal the pattern [63].

In order to reproduce the experimental P̄ (E,θ ), an aver-
age over all the possible molecular orientations should be
performed. Due to the axial symmetry of the molecule we
can restrict the average to 0 � θL � 90◦ and integrate all the
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contributions with the proper probability weight [41]

P̄ (E,θ ) ∝
∫ 90◦

0
dθL sin θLPθL

(E,θ ). (23)

We evaluate Eq. (23) by discretizing the integral in a sum
for θL = 0◦,30◦,60◦,90◦, and display the result in Fig. 9(b).
Even in this crude approximation, and without taking into
account focal averaging, the agreement with the experiment
is satisfactory and compares favorably to the molecular
strong-field approximation shown in Fig. 9(c). The agreement
deteriorates for low energies where the importance of the
Coulomb tail is enhanced as it is not fully accounted for due to
limited dimensions of the simulation box. As a matter of fact,
the agreement greatly increases for higher energies.

C. He-(I) PADs for carbon monoxide and benzene

In this section we deal with UV (ω = 0.78 a.u.) angular
resolved photoemission triggered by weak lasers. When the
external field is weak, nonlinear effects can be discarded and
first-order perturbation theory can be applied. In this situation,
the momentum-resolved PES can be evaluated by Fermi’s
golden rule as

P (p) ∝
∑

i

|〈�f |A0 · p|�i〉|2δ(Ef − Ei − ω), (24)

where |�i〉 (|�f 〉) is the initial (final) many-body wave
function of the system and A0 is the laser polarization axis.
The difficulty in evaluating Eq. (24) lies in the proper treatment
of the final state, which in principle belongs to the continuum
of the same Hamiltonian of |�i〉. In the simplest approach, it
is approximated by a plane wave (PW). In this approximation
the square root of the momentum-resolved PES is proportional
to the sum of the Fourier transforms of the initial state wave
functions �̃i(p) corrected by a geometrical factor |A0 · p|,√

P (p) ∝
∑

i

|A0 · p||�̃i(p)|. (25)

If photoemission peaks are well resolved in momentum,
individual initial states can be selectively measured. In this
case a correspondence between momentum-resolved PES
and electronic states in reciprocal space can be established.
The range of applicability of the PW approximation has
been discussed in the literature [5]. It has been postulated
that Eq. (25) should be valid for (i) π -conjugated planar
molecules, (ii) constituted by light atoms (H, C, N, O), and for
(iii) photoelectrons emerging with momentum p almost paral-
lel to the polarization axis.

Here we restrict ourselves to photoemission from the
highest occupied molecular orbital (HOMO). In this case
Eq. (25) becomes√

PH (p) ∝ |A0 · p||�̃H (p)|, (26)

with the subscript H indicating HOMO-related quantities.
We compare ab initio TDDFT and PW PADs evaluated at
fixed momentum |pH | = √

2EH with EH = ω − EB being
the kinetic energy of photoelectrons emitted from the HOMO
and EB its binding energy.

TDDFT numerical calculations are carried out on a grid
with spacing �r = 0.28 a.u. for benzene and �r = 0.38 a.u.

(b)(a)

C O

FIG. 11. Photoemission geometries for oriented (a) benzene and
(b) CO molecules.

for CO, in a simulation box of RA = 30 a.u. Photoelectron
spectra are calculated using MM with RC = 20 a.u. and
padding factors P = 1, PN = 8. A 40 cycles pulse with 8
cycle ramp at the He-(I) frequency ω = 0.78 a.u. and intensity
I = 1 × 108 W/cm2 is employed.

We begin presenting the case of benzene since it con-
stitutes the smallest molecule meeting all the conditions
for Eq. (26) to be valid. Results for molecules oriented
according to Fig. 11(a), evaluated at EH = 0.363 a.u., and two
different laser polarizations A0 = â1, â2 with â1 = (1,0,0),
â2 = 1/

√
3 × (1,1,1), are shown in Fig. 12. In the case where

the laser is polarized along the x axis [see Fig. 12(b)], PAD
presents a four lobes symmetry separated by three horizontal
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FIG. 12. (Color online) He-(I) PADs for aligned benzene
molecules. We compare PADs from PW |A0 · p||�̃H (p)| (left column)
and TDDFT

√
PH (p) (right column) on a sphere at constant kinetic

energy EH = 0.363 a.u. for different laser polarizations A0 (see
text for details). Values on the sphere are normalized to unity. We
used a 40 cycles (8 cycles ramp) UV trapezoidal laser pulse with
λ = 58 nm (ω = 0.78 a.u.), and intensity I = 1 × 108 W/cm2. In
the top row A0 = â1 = (1,0,0), and in the bottom row A0 = â2 =
1/

√
3 × (1,1,1). White tics indicate the intersection of the laser

polarization axis with the sphere at constant kinetic energy EH . The
geometry of the photoemission process is indicated in Fig. 11(a).
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FIG. 13. (Color online) He-(I) PADs for aligned CO molecules.
Panel ordering and laser parameters are the same as in Fig. 12. The
molecule is oriented according to Fig. 11(b) and the photoelectron
spectra were evaluated on a sphere at Eh = 0.261 a.u.

and two vertical nodal lines. This structure is reminiscent
of the HOMO π symmetry with the nodal line at θ = 90◦
corresponding to the nodes of the orbital on the x-y plane.
Information on the orientation of the molecular plane could
then be inferred from the inspection of this nodal line in the
PAD. A similar feature can be observed also in the case of
an off-plane polarization as shown in Fig. 12(d). In this case,
however, the laser can also excite σ orbitals and the nodal
line at θ = 90◦ is partially washed out. The other nodal lines
can be understood in term of zeros of the polarization factor
|A0 · p| and are thus purely geometrical. A PW approximation
of the photoelectron distribution given by Eq. (26) qualitatively
reproduce the ab initio results as shown in Figs. 12(a) and
12(d). According to condition (iii) a quantitative agreement is
reached only for directions parallel to the polarization axis.

A different behavior is expected in the case of CO. Photo-
electrons with kinetic energy of EH = 0.261 a.u. are show in
Fig. 13. In this case, condition (i) (i.e., π -conjugated molecule)
is not fulfilled and a worse agreement between ab initio and PW
calculations is expected. The quality of the agreement can be
assessed by comparing the left and right columns of Fig. 13.
Here, the weak angular variation of |�̃H (p)| is completely
masked by the polarization factor |A0 · p| [cf. Figs. 13(a)
and 13(c)]. For this reason no information on the molecular
configuration can be recovered from a PW model.

The situation is qualitatively different for TDDFT as, in
this case, single atom electron emitters are fully accounted for.
Here the nodal pattern is mainly governed by the polarization
factor, but, however, fingerprints of the molecule electronic
configuration can be detected. For instance, when the laser
is polarized along the molecular axis, an asymmetry of the
photoemission maxima can be observed for directions parallel
to â1 [see Fig. 13(b)]. Here the global maximum is peaked

around (φ,θ ) = (180◦,90◦) corresponding to the side of the
carbon atom on the molecular axis [cf. Fig. 11(b)]. These
features can be again understood in terms of the shape of
the HOMO. For CO, in fact, the HOMO is a σ orbital with the
electronic charge unevenly accumulated around the carbon
atom. It is therefore natural to expect photoelectrons to be
ejected mainly around the molecular axis and with higher
probability form the side of the carbon atom. This asymmetry
is therefore a property of the electronic configuration of
the molecule and gives information about the molecular
orientation itself. This behavior appears to be stable upon
molecule rotation as can be observed in the case where
the polarization is tilted with respect to the molecular axis
[A0 = â1; see Fig. 13(d)]. Even here the nodal structure is
mainly dictated by the polarization factor.

IV. CONCLUSIONS

In this work we studied the problem of photoemission in
finite systems with TDDFT. We presented a formal derivation
of a photoelectron density functional from a phase-space
approach to photoemission. Such a functional can be directly
applied to other theories based on a single Slater determinant
and the derivation could serve as a base for extensions to more
refined models.

We proposed a mixed real- and momentum-space evolution
scheme based on geometrical splitting. In its complete form
it allows particles to seamlessly pass back and forth from a
real-space description to a momentum-space description. The
ordinary splitting scheme turns out to be a special case of this
more general method. Furthermore, we illustrated applications
of the method on four physical systems: hydrogen, molecular
nitrogen, carbon monoxide, and benzene.

For hydrogen we presented a comparison of the different
methods. We studied ATI peak formation in a one-dimensional
model and ATI angular distributions for a three-dimensional
case. The results turned out to be in good agreement with the
literature. From the comparison, we derived a prescription to
choose the best method based on a classification of the electron
dynamics induced by the external field.

We investigated angular-resolved photoemission for ran-
domly oriented N2 molecules in a short intense IR laser
pulse. We illustrated the results for four different molecular
orientations with respect to the laser polarization. Owing to
the symmetry of the problem we were able to combine the
results to account for the random orientation. The spectrum
for randomly oriented molecules is in good agreement with
experimental measurements and is much better than the widely
used strong-field approximations (with one active electron)
[28].

We also studied UV angular-resolved photoelectron spectra
for oriented carbon monoxide and benzene molecules. We
presented numerical calculations for two different directions
of the laser polarization and compared with the plane-wave
approximation. We found that the plane-wave approximation
provides a good description for benzene while failing for CO.
Furthermore, we found evidence that the photoelectron an-
gular distribution carries important information on molecular
orientation.
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The successful implementation of photoelectron density
functional presented in this paper paves the road for interesting
applications to many different systems for a wide range of
laser parameters. To name a few, TDDFT PAD could provide a
theoretical tool superior to the plane wave and the independent
atomic center approximations to retrieve molecular adsorption
orientation information from experiments. Attosecond pump
probe experiments could be simulated ab initio accounting
for many-body effects but with great computational advantage
with respect to full many-body methods and better physical
description than SAE pictures.
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APPENDIX A: OVERLAP INTEGRALS

In this section we describe the details of the inclusion of
the Kohn-Sham one-body density matrix (9) into Eq. (4). The
momentum-resolved photoelectron probability is the sum over
all the occupied orbitals of four overlap integrals γ ,

P (p) =
occ∑
i=1

γA,A,i(p) + γA,B,i(p) + γB,A,i(p) + γB,B,i(p) .

(A1)

In order to simplify the notation we drop the orbital index i in
the overlap integrals and indicate with v = vv̂ the vector v of
modulus v and direction v̂. In addition, we will consider the
simple case where the boundary surface between region A and
B is a d-dimensional sphere of radius RA.

We start by considering the mixed overlap,

γAB(p) =
∫

B

dR
∫

ds

(2π )
d
2

eip·sψA

(
R + s

2

)
ψ∗

B

(
R − s

2

)
,

(A2)

where the integration in B is for R > RA [cf. Fig. 1(a)]. It is
convenient to work in the coordinates v = 2R and r = R +
s/2, where the integral takes the form∫

v>2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψA(r)ψ∗
B(v − r). (A3)

We substitute ψ∗
B with its Fourier integral representation,

ψ∗
B(u − r) =

∫
dk

(2π )
d
2

eik·(u−r)ψ̃∗
B(k), (A4)

and after a few simple steps we obtain∫
dk

(2π )
d
2

ψ̃A(−2p − k)ψ̃∗
B(k)

∫
v>2RA

dv e−i(k+p)·v, (A5)

where we successfully disentangled the integration over v
in the second integral. The integral on v > 2RA can be
rewritten as an integral over the whole space, which yields
a d-dimensional Dirac delta, minus an integral on v � 2RA:∫

v>2RA

dv e−i(k+p)·v

= (2π )dδ(k + p) − (4πRA)
d
2
Jd/2(2RA|k + p|)

|k + p| d
2

, (A6)

where Jn(k) is a Bessel function of the first kind. The second
term in Eq. (A6) is a function centered in −p and strongly
peaked in the region w = Cd/RA with C1 = π , C2 ≈ 3.83, and
C3 ≈ 4.49 being the first zeros of the Bessel function Jd/2(k). If
the region w is small enough we can consider the integrand in k
of Eq. (A5) constant and factor out of the integrand ψ̃A(−2p −
k)ψ̃∗

B(k) evaluated at k = −p. It is easy to see that∫
dk

(2π )
d
2

(2RA)
d
2
Jd/2(2RA|k + p|)

|k + p| d
2

= 1 (A7)

and, by plugging Eq. (A6) in Eq. (A5), we have that γA,B(p) ≈
0. By the same reasoning we should expect γB,A(p) ≈ 0.

We now turn to the terms containing the wave function on
the same region. In (v,r) coordinates,

γA,A(p) =
∫

v>2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψA(r)ψ∗
A(v − r).

(A8)

The product of functions localized in A is not negligible
only for r < RA and |v − r| < RA. Since the integral is
carried out for v > 2RA we can bound |v − r| from below
with RA|2v̂ − r/RA| � RA. This leads to RA � |v − r| < RA,
which is satisfied only on the boundary of A. Being a set of
negligible measure we have γA,A(p) = 0.

Once again, in (v,r) coordinates,

γB,B(p) =
∫

v>2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψB(r)ψ∗
B(v − r)

(A9)

can be written as

γB,B(p)

= |ψB(p)|2 −
∫

v<2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψB(r)ψ∗
B(v−r),

(A10)

where the first integration is in region A. Using the localization
of ψB we see that the integral is nonzero only for r > RA

and |v − r| > RA. As the integration is for v < 2RA we have
that RA � |v − r| > RA and therefore the double integral in
Eq. (A10) is zero.
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APPENDIX B: NUMERICAL STABILITY AND FOURIER
INTEGRALS

A real-space implementation of Eq. (15) involves the evalu-
ation of several Fourier integrals. Such integrals are necessarily
substituted by their discrete equivalent, and therefore discrete
Fourier transforms (FT) and fast Fourier transforms (FFTs)
are called into play. However, evolution methods based on the
discrete FT naturally impose periodic boundary conditions.
While this is not presenting any particular issue for MM
where FT are only used to map real-space wave functions
to momentum space, it is a source of numerical instability
for FMM where the wave functions are reintroduced in the
simulation box.

The problem is well illustrated by the following one-
dimensional example. Imagine a wave packet freely prop-
agating to an edge of the simulation box with a certain
velocity. In MM, when passing trough the buffer region,
the packet is converted by discrete FT in momentum space
and then analytically evolved as a free particle through the
edge of the box. In FMM as the wave function evolves in
momentum spaces it is also transformed back to real space
to account for possible charge returns. In this case, instead
of just disappearing from one edge, by virtue of the discrete
FT periodic boundary conditions, the same wave packet will
appear from the opposite side. It can be easily understood how
such an undesirable event can create a feedback leading to an
uncontrolled and unphysical buildup of the density.

This behavior can be controlled by the use of zero padding.
As we know, the Fourier integrals in Eq. (15) involve functions
that are, by construction, zero outside the buffer region C. We
can therefore enlarge the integration domain (having radius
RA) by a padding factor P , set the integrand to zero in the
extended points, obtaining the same result. As a consequence,
a wave packet propagating toward a boundary edge will have
to run an enlarged virtual box of radius R̃A = RA(2P − 1)
before emerging from the other side. In addition, the small-
est momentum represented �p̃ = 2π/PRA = �p/P in the

discretized ψ̃B,i(p,t ′) is reduced by a factor 1/P , while the
highest momentum pmax = π/�r remains unchanged. The
price to pay here is an increased memory requirement by a
factor P d (where d is the dimension of the simulation box)
and is too high for three-dimensional calculations.

A possible way to find a better scaling is offered by the
use of nonuniform discrete Fourier transform and companion
fast algorithm (NFFT) [64,65]. NFFT allow for the possibility
to perform Fourier integrals on unstructured sampling points
with, for fixed accuracy, the same arithmetical complexity as
FFT. For a detailed description of the algorithm we refer to
the literature [65]. The idea is to use the flexibility of NFFT to
perform zero padding in a convenient way. Instead of allocating
an enlarged box filled with zeros at equally spaced sample
positions, we set only one point at RAPN (here PN is the
NFFT padding factor) and evaluate the Fourier integral with
NFFT. In this way we gain numerical stability for FMM as
long as the wave functions are contained in a virtual box of
R̃A = RA(2PN − 1) at the price of adding a number of points
that scales as d − 1 with the dimension of the box. If Nd is
the number of grid points in the simulation box, in order to
perform zero padding with NFFT one needs to add only 2Nd−1

points.
With this procedure, however, not only the smallest mo-

mentum �p̃ is reduced by a factor 1/PN , but also the highest
momentum p̃max = (N/2 + 1)�p̃ is decreased by the same
amount. This turns out to be the limiting factor in the use
of NFFT to preserve numerical stability with FMM as the
enlargement factor PN has an upper bound that depends on
the escaping electron dynamics. In fact, when we evaluate
the back-action term Eq. (16b), we assume ψ̃B,i(p,t ′) to be
localized in momentum and, in order to preserve numerical
consistency, PN must be limited by the highest momentum
contained in ψ̃B,i . A combination of ordinary padding and
NFFT padding helps to balance the tradeoff between memory
occupancy and numerical stability.

Finally, in MM zero padding can be used to increase
resolution in momentum.
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