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Correlation effects in bistability at the nanoscale: Steady state and beyond
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The possibility of finding multistability in the density and current of an interacting nanoscale junction coupled
to semi-infinite leads is studied at various levels of approximation. The system is driven out of equilibrium
by an external bias and the nonequilibrium properties are determined by real-time propagation using both
time-dependent density functional theory (TDDFT) and many-body perturbation theory (MBPT). In TDDFT
the exchange-correlation effects are described within a recently proposed adiabatic local density approximation
(ALDA). In MBPT the electron-electron interaction is incorporated in a many-body self-energy which is then
approximated at the Hartree-Fock (HF), second-Born, and GW level. Assuming the existence of a steady state
and solving directly the steady-state equations we find multiple solutions in the HF approximation and within
the ALDA. In these cases we investigate whether and how these solutions can be reached through time evolution
and how to reversibly switch between them. We further show that for the same cases the inclusion of dynamical
correlation effects suppresses bistability.
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I. INTRODUCTION

The phenomenon of bistability has been the subject of
several studies in the field of quantum transport. In their
seminal paper Goldman et al.1 reported the observation of
bistability in the I-V curve of double-barrier resonant tunneling
(DBRT) structures, thus stimulating many theoretical2–5 and
experimental investigations6,7 on the subject. The bistability is
a nonlinear effect induced by the electrostatic charge buildup
in the quantum well and occurs in the bias window of negative
differential resistance.1 From the theoretical point of view,
various techniques have been used to capture this phenomenon,
ranging from a crude estimate of the charge buildup6 to
self-consistent calculations at a mean-field level.2–4,8–10

With the increasing interest in transport through nanoscale
devices, in particular using molecules as a possible component
of future electronic circuits, the study of intrinsic bistability in
nanoelectronics has gained new attention. The possibility of
finding molecular devices equivalent to conventional nonlinear
devices, such as diodes and transistors, is indeed an attrac-
tive perspective. There have already been some successful
attempts along these lines. Molecular devices with large
on-off current ratio and large negative differential resistance,
behaving similarly to mesoscopic DBRT structures, have
been reported.11,12 So far, the great majority of bistability
studies have been limited to the steady-state regime and
performed within the framework of the Landauer formalism
combined with static density functional theory (DFT). At the
Hartree level, bistability was reported for a double quantum
dot structure.13,14 In the context of time-dependent (TD)
DFT, the inclusion of memory effects beyond the adiabatic
approximation is not straightforward and the development
of accurate functionals to be used in numerical calculations

is still under way. A promising and timely, even though
computationally demanding, alternative is the solution of the
Kadanoff-Baym (KB) equations15–21 using self-energies from
many-body perturbation theory (MBPT). The advantage of
MBPT over TDDFT is the inclusion of dynamical exchange-
correlation (XC) effects, i.e., effects arising from a frequency-
dependent self-energy, in a more systematic way through the
selection of suitable Feynman diagrams. Thus, MBPT provides
an important tool to go beyond the commonly used adiabatic
approximations and to quantify the importance of dynamical
XC effects.

The fundamental issue which we address in this paper
is whether the bistability phenomenon found in static DFT,
Hartree, and Hartree-Fock (HF) approximation survives when
dynamical XC effects are taken into account. In contrast to
DFT and mean-field approximations the steady-state equations
of MBPT do not form a closed set of equations for the density
only. This difficulty renders the search for the bistability
regime in MBPT computationally very costly. To overcome the
problem we implement a time-dependent strategy.20–29,31–34

We first solve the steady-state equations of DFT and mean-field
theory to determine the parameter range for bistability. Then
we go beyond the current state-of-the-art and provide a
TD description of the bistability phenomenon in adiabatic
TDDFT23–29 and TD mean-field theory. We show how to
switch between different stable states by means of ultrafast gate
voltages or external biases (driving fields). The possibility of
reversibly switching between different stable steady states is an
aspect that has remained largely unexplored.30 Knowing how
to steer the electron dynamics in real time we use the same driv-
ing fields in correlated MBPT simulations. The calculations
are performed with the fully self-consistent second-Born (2B)
and GW approximations which have recently been shown31
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to agree with numerically exact TD-DMRG results.35 In all
cases studied here where adiabatic DFT and HF theory predict
bistability dynamical XC effects destroy the phenomenon.

The paper is organized as follows: In Sec. II we introduce
the model used in our study. In Sec. III we introduce the
TDDFT approach to transport, with a particular emphasis on
the real-time propagation to study time-dependent transport
phenomena. Assuming that the system reaches a steady state,
the steady-state density can be calculated without explicitly
propagating in time, as explained in Sec. III B. In this section a
separate (fixed-point) analysis is given to determine whether or
not a solution is stable. As an alternative real-time approach to
transport, we introduce in Sec. IV the MBPT approach based
on the solution of the KB equations. In Sec. V, we present
the results of our numerical simulations for a certain set of
parameters for which multiple solutions are observed in DFT.
Finally, conclusions are drawn in Sec. VI.

II. THE MODEL

In this work we study multistability in quantum transport;
i.e., we study the question of whether, for a given set of
parameters, a biased system can have more than one steady
state. Apart from proposing a way to classify the different
steady states as stable or unstable, we also investigate by
explicit time evolution the possibility to reversibly switch
between different steady states by application of a suitably
chosen, time-dependent perturbation.

These questions are addressed in model systems. We
consider a nanoscale device consisting of a few interacting sites
contacted to two noninteracting tight-binding leads. Initially,
the contacted system is in equilibrium at a given temperature
and chemical potential. At time t0 = 0 we switch on a bias
in the leads and follow the time evolution of the perturbed
system.

The Hamiltonian of the system consists of three different
parts,

Ĥ (t) = ĤC(t) +
∑

α=L,R

Ĥα(t) + ĤT , (1)

where the Hamiltonian ĤC(t) of the central device describes a
chain of NC sites with a Hubbard-type on-site electron-electron
interaction:

ĤC(t) =
NC∑

i = 1
σ

εC
i (t)d̂†

iσ d̂iσ −
NC−1∑
i = 1

σ

(VCd̂
†
iσ d̂i+1σ + H.c.)

+ 1

2

NC∑
i = 1
σσ ′

Ud̂
†
iσ d̂

†
iσ ′ d̂iσ ′ d̂iσ . (2)

Here, d̂
†
iσ (d̂iσ ) denote creation (annihilation) operators for

electrons with spin σ at site i. The εC
i (t) are on-site energies

which may consist of an arbitrary time-dependent part, denoted
as Vg,i(t), plus a time-independent part, εC

i . The nearest-
neighbor hopping in the chain is VC and U is the on-site
Hubbard interaction.

The noninteracting left (L) and right (R) leads, α = L,R,
are described by one-dimensional semi-infinite chains with
Hamiltonian

Ĥα(t) =
∞∑

i = 1
σ

[εα + Wα(t)]ĉ†iσαĉiσα

−
∞∑

i = 1
σ

(Vαĉ
†
iσαĉi+1σα + H.c.), (3)

with creation (annihilation) operators ĉ
†
iσα (ĉiσα) for electrons

with spin σ at site i in the lead α. The on-site energies εα

and the hopping matrix elements Vα are independent of time
and site index while Wα(t) describes a time-dependent, site-
independent bias applied to the lead α.

Finally, the tunneling Hamiltonian which couples the leads
to the device is given by

ĤT = −
∑

σ

(
Vlinkd̂

†
1σ ĉ1σL + Vlinkd̂

†
NCσ ĉ1σR + H.c.

)
, (4)

where we have adopted the convention that the site in the lead
α connected to the device is labeled by the site index 1 and
Vlink is the hopping between the central region and the leads.

III. MULTISTABILITY IN TIME-DEPENDENT DENSITY
FUNCTIONAL THEORY

In this section we introduce the TDDFT approach40 which
we will use to investigate multistability in our model system.
In TDDFT, the complicated problem of interacting electrons
is mapped, in principle exactly, on the much simpler problem
of noninteracting Kohn-Sham (KS) electrons moving in an
effective local potential, thus providing a natural way to
account for correlation effects in both leads and device
region.23,25 Since the method only involves the propagation of
single-particle wave functions, it provides a computationally
efficient way to study time-dependent phenomena in quantum
transport.26 The real-time TDDFT approach to transport will
be described in Sec. III A. While in principle exact, in
practice TDDFT requires the use of approximations for the
time-dependent XC functionals. The most popular one, the
adiabatic local density approximation (ALDA), depends only
on the local and instantaneous density; i.e., it does not include
memory effects. On one hand this feature is certainly a
shortcoming of the approximation whose consequences for
time-dependent transport still need to be explored. On the
other hand, in the context of multistability, this approximation
allows one to formulate the steady-state condition in terms of
a closed set of nonlinear equations for the steady-state density.
The solution of these equations allows for an efficient scan
of parameter space to find those parameter values for which
multistability is possible. This steady-state approach with the
local and adiabatic approximation of TDDFT will be described
in Sec. III B.

A. Real-time TDDFT for transport

One of the technical difficulties in applying TDDFT to
quantum transport lies in the necessity of propagating an
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infinite nonperiodic system, or equivalently, a finite open
system attached to semi-infinite leads. Here we sketch the
technique of how this can be achieved. The technical details
of the algorithm can be found in Ref. 26.

In a localized (site) basis, the KS Hamiltonian of the total
system consisting of left lead, device, and right lead can be
partitioned in a block-diagonal matrix form as⎛

⎜⎝
HKS

LL(t) HLC 0

HCL HKS
CC(t) HCR

0 HRC HKS
RR(t)

⎞
⎟⎠ , (5)

where HKS
CC(t) is the Hamiltonian of the isolated device and

HKS
αα (t) = HKS

αα + WKS
α (t) is the Hamiltonian of the isolated

lead α. The time-dependent potential in the leads has the simple
form WKS

α (t) = Wα(t)1α where 1α is the identity matrix for
lead α = L,R. Finally, HCα and HαC describe the coupling
between lead α and the device. Here and in the following
we use boldface notation to indicate matrices in one-electron
labels.

Using downfolding techniques one can derive the equation
of motion for the kth KS single-particle orbital projected onto
the central region, ψk,C(t), which reads[

i∂t − HKS
CC(t)

]
ψk,C(t)

=
∫ t

0
dt̄ �R

em(t,t̄ )ψk,C(t̄ ) +
∑

α

HCαgR
αα(t,0)ψk,α(0).

(6)

Here, ψk,α(0) is the projection of the kth KS orbital on lead
α at the initial time t0 = 0, gR

αα(t,t ′) is the retarded Green’s
function of the isolated lead α, and the retarded embedding
self-energy is defined as

�R
em(t,t ′) =

∑
α=L,R

HCαgR
αα(t,t ′)HαC. (7)

The time-dependent density at site j of region C at zero
temperature can be written as

nj (t) = 2
occ∑
k

|ψk,C(j,t)|2, (8)

where the sum runs over the occupied KS orbitals and the
prefactor is due to spin degeneracy.

In our model the KS Hamiltonian matrix HKS
CC(t) has a tridi-

agonal form where the only nonvanishing entries are the off-
diagonal matrix elements [HKS

CC(t)]j,j+1 = [HKS
CC(t)]j+1,j =

−VC with j = 1, . . . ,NC − 1, and the diagonal matrix ele-
ments [

HKS
CC(t)

]
jj

= vKS(j,t)

= εC
j (t) + vH [nj (t)] + vxc[n](j,t), (9)

with j = 1, . . . ,NC . The second term on the right-hand side
of Eq. (9) is the Hartree potential and the third term is the XC
potential of TDDFT for model systems.36,37 Although in our
model the interaction is restricted to the device region only,
the exact XC potential has contributions in the adjacent lead
regions as well and will rigorously vanish only deep inside
the leads.38,39 Therefore, already at this point we make an

approximation by restricting the XC potential to the device
region only.

Of course, the exact form of vxc[n] is unknown and in prac-
tice one has to resort to approximations. For lattice systems, a
local density approximation (LDA) based on the Bethe ansatz
solution of the uniform one-dimensional Hubbard model has
been suggested41,42 and a parametrization of this Bethe ansatz
LDA (BALDA) has been presented in Ref. 41. The adiabatic
version43 of this functional (ABALDA) makes vxc[n] local
in both space and time; i.e., vxc[n](j,t) = vxc(nj (t)). The
original BALDA was designed for the uniform Hubbard model
with Hubbard interaction U and nearest-neighbor hopping V

everywhere. A modification of this functional for the case of
a single interacting impurity site (NC = 1) connected by a
hopping matrix element Vlink to the leads with hopping V has
been suggested in Ref. 45. In this work we use this modified
functional both for the case of a single impurity31 and also for
NC > 1 where in the latter case we impose the restriction that
the hopping VC between the sites in the central region is equal
to the hopping Vlink from the chain to the leads. A particularly
interesting property of the BALDA is its discontinuity at
integer values of the occupation number.44 This discontinuity
has a fundamental impact for time-dependent transport in the
Coulomb blockade regime and may prevent a biased system
from evolving toward a steady state.45

Finally, we note that for our Hubbard-like form of the
interaction, where each electron interacts only with electrons
of opposite spin on the same site, also the HF potential becomes
a local potential depending only on the local density. In our
numerical studies we will also present results obtained within
the HF approximation.

B. Adiabatic approximation: Steady-state condition
for the density

Following the time evolution of the system as it is driven out
of equilibrium by applying a bias in the leads tells us whether
and how the system attains a steady state in the long-time
limit. However, without doing the actual time propagation, we
can also assume that the system approaches a steady state and
study the consequences of this assumption. In the context of
multistability in TDDFT, a particularly useful consequence is
that, within the local and adiabatic approximation, it is possible
to derive a self-consistency condition for the steady-state
density.

Using nonequilibrium Green’s function techniques, the
steady-state density ñj := limt→∞ nj (t) can be obtained from
the lesser Green’s function projected onto the central region,
G<

CC , as

ñj = 2
∫

dω

2πi
[G<

CC(ω)]jj . (10)

The lesser Green’s function can, in turn, be obtained from

G<
CC(ω) = GR

CC(ω)�<
em(ω)GA

CC(ω), (11)

where �<
em(ω) is the lesser embedding self-energy while

GR
CC = [GA

CC]† is the retarded KS Green’s function which,
at the steady state, reads

GR
CC(ω) = (

ω − H̃KS
CC(ñ) − �R

em(ω)
)−1

. (12)
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In this formula

H̃KS
CC(ñ) := lim

t→∞ HKS
CC(t) (13)

is the asymptotic value of the KS Hamiltonian in the central
region. Note that H̃KS

CC depends on ñ only in the local and
adiabatic approximation.

For the 1D tight-binding leads the retarded embedding self-
energy has the structure[

�R
em(ω)

]
ij

= �R
em,L(ω)δi,1δj,1 + �R

em,R(ω)δi,Nc
δj,Nc

, (14)

and therefore the self-consistency condition (10) becomes

ñj =
∫

dω

π

{
fL(ω)�L(ω)

∣∣[GR
CC(ω)

]
1,j

∣∣2

+ fR(ω)�R(ω)
∣∣[GR

CC(ω)
]
Nc,j

∣∣2}
, (15)

with the shifted Fermi function fα(ω) = f (ω − W̃α), W̃α :=
limt→∞ Wα(t), and �α = −2Im[�R

em,α]. Since the KS Green’s
function of Eq. (12) depends on ñ only, Eq. (15) is a set
of coupled nonlinear equations for the steady-state density
ñj , j = 1, . . . ,NC , at the sites of the device region. Due to
the nonlinearity of these equations, more than one fixed-point
solution may exist. Therefore, one can use Eq. (15) to scan
the parameter space for possible multiple steady states. Once
these values are identified we can investigate whether and how
the different steady states are attained by time propagation.

We close this section by recalling a few basic properties of a
fixed-point (FP) solution46 which we will use in the following
to interpret and understand our numerical results. Consider a
system of NC coupled equations of the general form

n = g(n), n = (
n1,n2, . . . ,nNC

)
. (16)

Let the vector ñ be a fixed-point solution of Eq. (16) and J the
Jacobian matrix dg

dn |ñ. A fixed point is stable if the modulus of
all eigenvalues of J is smaller than unity, partially unstable if
there exists at least one eigenvalue with modulus larger than
unity (saddle point), and totally unstable if the modulus of all
eigenvalues is larger than unity.

IV. MANY-BODY TECHNIQUE: KADANOFF-BAYM
EQUATIONS

An alternative approach to TDDFT for transport is the
time-dependent MBPT formulation of transport20,21 based
on the time evolution of the Green’s function via the KB
equations.15–19 In the MBPT, the many-body self-energy �MB

can be approximated by a selection of suitable Feynman
diagrams, relevant for the description of the main scattering
processes. In earlier work31 we have found that the 2B approx-
imation is in excellent agreement with accurate TD-DMRG
results in the regime of weak to intermediate interaction
strength for the Anderson impurity model.35 Hence the 2B
approximation is extremely useful for benchmarking other
approximations. The main quantity of MBPT is the Keldysh
Green’s function, G(z,z′), where z and z′ are time coordinates
on the Keldysh contour C.47–49 To describe the electron
dynamics of the system, the Keldysh Green’s function is
propagated in time according to the KB equations. Since we are
interested in the dynamical processes occurring in the central

region, we can again use embedding techniques to derive the
equation of motion for the Green’s function GCC projected on
the central region. This equation reads

[i∂z − HCC(z)]GCC(z,z′)

= δ(z,z′) +
∫
C
dz̄ [�em(z,z̄) + �MB(z,z̄)]GCC(z̄,z′), (17)

where, in addition to the embedding self-energy �em(z,z̄),
we also have included a many-body self-energy �MB(z,z̄)[G].
This later quantity is a functional of the Green’s function and
fulfills all basic conservation laws.50,51 We consider only the
central region to be interacting and the leads are effectively
noninteracting. Therefore the many-body self-energy has
nonvanishing elements only for the central region, because the
diagrammatic expansion starts and ends with an interaction
line.20,21

Equation (17) is an exact equation for GCC , provided
an exact expression for �MB is inserted. Of course, for
practical calculations the many-body self-energy must be
approximated. In this paper we explicitly considered the
following conserving approximations for the self-energy:
the HF, 2B, and GW approximations. Their diagrammatic
representations are illustrated in Fig. 1. The implementation
of Eq. (17) requires a transformation into equations for real
times, known as KB equations, which are then solved by
time propagation.16,20,21,52 From the knowledge of the Green’s
function any one-particle property of the system can be
extracted. In particular, the time-dependent density can be
obtained from the lesser Green’s function as

nj (t) = −2i[G<
CC(t,t+)]jj . (18)

In the correlated case there is no simplification such as Eq.
(8) since there are no more well-defined single-particle states.
Also the current through lead α can be expressed in terms of
the Keldysh Green’s functions and reads20,21

Iα(t) = 2Re

{
TrC

[ ∫ t

t0

dt̄[G<
CC(t,t̄)�A

em,α(t̄ ,t)

+
∫ t

t0

dt̄GR
CC(t,t̄)�<

em,α(t̄ ,t)]

− i

∫ β

0
dτ̄G�

CC(t,τ̄ )��
em,α(τ̄ ,t)

]}
. (19)

Besides the superscripts A (advanced), R (retarded), and
< (lesser), we also introduced the superscripts � and � to denote
the components with one time argument on the imaginary
axis and the other on the real axis and vice versa.23,49 The
trace is taken over one-electron indices in the central region.
Equation (19) generalizes the Meir-Wingreen formula53 as it

2B:

GW:

HF: +

+++

...+ + +++

FIG. 1. Conserving many-body approximations.
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includes initial many-body and embedding effects through the
integral along the imaginary track of the contour (last term).

For the interpretation of the numerical results we found it
useful to look at the TD spectral function defined according to

A(T ,ω) = −Im TrC

∫
dτ

π
eiωτ [G>

CC − G<
CC]

(
T + τ

2
,T − τ

2

)
,

(20)

where τ = t − t ′ is a relative time and T = (t + t ′)/2 is
an average time coordinate. In equilibrium, this function is
independent of T and has peaks below the Fermi level at
the electron removal energies and above the Fermi level at
the electron addition energies. If the time-dependent external
field becomes constant after some switching time, then also
the spectral function becomes independent of T after some
transient period and has peaks at the addition and removal
energies of the nonequilibrium biased system.

In the HF approximation the many-body self-energy is
frequency independent and therefore the only broadening of
the spectral peaks comes from the embedding part. This is also
the case for the ABALDA. When going beyond the mean-field
level, the self-energy becomes frequency dependent and as a
consequence the peaks of the spectral function are typically
broadened.

In the local and adiabatic approximation of TDDFT we have
found a shortcut to determine whether, for a given parameter
set, the biased system can have multiple steady states (see
Sec. III B). It is important to note that a similar shortcut does
not exist in MBPT. The reason is that in MBPT the self-
consistency condition for the steady-state density requires the
knowledge of GCC(ω) (to compute the many-body self-energy
�MB[GCC]) and thus the equations cannot be closed in terms
of the density only. As a consequence, in MBPT one does not
have an efficient method to scan the parameter space to look for
bistability. Although this feature is somewhat inconvenient for
our analysis, physically it is quite reasonable because it implies
that possible dynamical XC effects (arising from the frequency
dependence of the many-body self-energy) are included.

V. RESULTS

In this section, we present the results of our numerical
simulation for a certain set of parameters for which the
self-consistency condition (15) admits multiple solutions.
We investigate how one can switch between different stable
solutions by applying a time-dependent gate voltage. We also
demonstrate that for the same parameter sets the bistability is
suppressed in the correlated many-body approximations, e.g.,
2B and GW . The analysis will be carried out in two types of
model devices, namely the one- and two-site Hubbard models.

A. Single-site Hubbard model

As a first example, we study a single-site Hubbard model
connected to semi-infinite leads with the following parameters:
Vlink = 0.3, WL = 1.8, WR = −1.0, U = 2.0, εC = −0.6,
εα = εF = 0 (half-filled leads), and the inverse temperature
β = 90. All energies are measured in units of the lead-hopping
parameter V . In the biased system the bandwidth of the leads
extends from εF + Wα − 2V to εF + Wα + 2V . With these

FIG. 2. (Color online) Spectral functions for the different steady-
state solutions of the HF approximation (top-left panel) and BALDA
(top-right panel). The graphical solution of Eq. (15) is displayed in
the bottom-left panel for the HF and BALDA. For comparison we
also report the 2B and GW steady-state spectral functions in the
bottom-right panel.

parameters the self-consistent equation (15) admits five (three)
solutions within the HF (BALDA) approximation. The fixed
points are shown in the lower left corner of Fig. 2 where
we display the left- and right-hand side of Eq. (15). The
corresponding densities in the case of HF are ñ1 = 0.17,
ñ2 = 0.54, ñ3 = 1.0, ñ4 = 1.46, and ñ5 = 1.83 while for
the BALDA the three fixed-point densities are ñ1 = 0.18,
ñ2 = 1.00, ñ3 = 1.82.

For a single site the fixed-point theorem tells us that a
solution is stable if | dg

dn
|ñi

< 1, with g being the right-hand
side of Eq. (15). Hence, one can see from Fig. 2 that the
fixed points ñ1, ñ3, and ñ5 are stable in the case of the HF,
while in the case of the BALDA the stable solutions are ñ1

and ñ3. Although the solution with density of unity exists for
both approximations, it is stable in the HF approximation and
unstable in the BALDA.

In the upper panels of Fig. 2 we plot the steady-state spectral
functions corresponding to the fixed points of the HF and
BALDA. The HF peak for density ñ1 = 0.17 (and the BALDA
peak for density ñ1 = 0.18) is located within the right lead
energy continuum, while the HF peak for density ñ5 = 1.83
(and the BALDA peak for density ñ3 = 1.82) is located within
the left lead energy continuum. In both cases, the spectral
weight lives only in the range of one of the lead bands but
has very little overlap with the occupied part of the other one.
Therefore, the occupation of the impurity is mostly due to
hybridization with lead states of only one of the leads. The HF
spectral function corresponding to the unstable fixed points,
ñ2 and ñ4, are peaked at the edges of the left and right lead
band, respectively. The HF and BALDA spectral functions of
the fixed point with density of unity are identical (the XC
potential is zero in this case) and the peak is located exactly
in the middle of the overlapping region between the left and
right bands. In spite of this, the stability condition of this fixed
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point is completely different in the HF and BALDA cases.
Since the multistability can be most easily observed if the
spectral peaks of the stable solutions are well separated, we
conclude that this phenomenon is favored when the energy
bands have a small overlap and the system is in the negative
differential resistance (NDR) regime. As we shall see below,
for the correlated MBPT approximations the situation is very
different. In the lower right panel of Fig. 2 we show the 2B
and GW steady-state spectral functions, as obtained from the
propagation of the KB equations. The spectral weight is spread
over the whole lead energy range and beyond. Consequently,
the height of the spectral function is also much smaller. The
considerable broadening is due to an increased quasiparticle
scattering in the out-of-equilibrium system as already observed
in Ref. 21.

Let us now study how to switch between different stable
steady-state densities using ultrafast time-dependent driving
fields. We start from the initially unbiased equilibrium system
with ground-state density ñ0 = 0.69 (ñ0 = 0.82) for HF
(BALDA). In Fig. 3 we show the time evolution of the
density at the interacting site for different approximations
after the sudden switch-on of the bias voltage WL = 1.8
and WR = −1.0. In the HF approximation we observe that
after some transient time the density approaches the value
1. The behavior of the ABALDA density is very different, in
agreement with the fact that the solution with density of unity is
unstable and hence cannot be reached by time evolution. At the
steady state the ABALDA density equals the lowest value ñ1.

To switch to the other stable solutions in real time we
applied a time-dependent gate pulse on the Hubbard site. In
this work we have used an exponentially decaying gate voltage

FIG. 3. (Color online) Top panel: Time-dependent density in the
HF approximation (top) and ABALDA (bottom) after the sudden
switch on of the bias voltage and a series of gate pulses as in
Eq. (21). Bottom panel: Time-dependent density within 2B (left)
and GW approximations (right) after the sudden switch on of the
bias voltage and a gate pulse as in Eq. (21) with Vg = −3,0,3.

FIG. 4. (Color online) Nonequilibrium spectral function for a gate
pulse Vg = −3, γ = 0.2 which brings the density to ñ1 first, followed
by a second identical gate pulse but with opposite amplitude which
brings the density to ñ5. The intermediate transition to the ñ3 stable
solution is clearly visible.

of the form

Vg(t) =

⎧⎪⎨
⎪⎩

Vge
−γ t , if 0 < t < Tg,

−Vge
−γ (t−Tg ) , if Tg < t < 2Tg,

Vge
−γ (t−2Tg ) , if t > 2Tg.

(21)

In Fig. 3 we show that in the HF case, the state with the lowest
density ñ1 can be obtained (in addition to applying a sudden
bias in the leads) by switching on a pulse with amplitude
Vg = −3.0, decay rate γ = 0.2, and Tg = ∞. The state with
highest density ñ5 = 1.83 can be obtained in a similar fashion
but now applying a gate with positive amplitude Vg = 3.0.
Thus, by changing the amplitude of the gate voltage we can
switch between stable steady-state solutions. For instance, with
a first pulse of positive amplitude and Tg = 50 � 1/γ the
system reaches the state with ñ5. At the time Tg we apply a
second pulse but with negative amplitude. The density shows
a transient behavior after which it approaches the value ñ1. If
we now apply a third pulse of positive amplitude at time 2Tg

the density goes back to the initial value ñ5. This is nicely
illustrated in Fig. 3. In Fig. 4 we show the nonequilibrium HF
spectral function A(T ,ω) of Eq. (20) for a double switch with
Vg = −3.0, γ = 0.2, and Tg = 50. The figure enlightens an
interesting aspect regarding the transition from one steady
state to another. The density rises from the lowest ñ1 to
the highest ñ5 lingering for a while in the middle stable
solution ñ3.

Going back to Fig. 3 we see that also in the ABALDA the
state with highest density ñ3 = 1.83 is reached by applying a
gate pulse with Vg = 3.0 and γ = 0.2 (in addition to a sudden
bias in the leads). If the amplitude is negative instead (Vg =
−3.0) the density increases first but eventually drops down
and goes back to its initial value ñ1. Like in the HF case
we can switch back and forth between stable solutions by
changing the sign of Vg . Not unexpectedly, however, the decay
time τγ ∼ 1/γ cannot be arbitrarily short. If τγ is too short
the system does not have time to accumulate or lose enough
density to change the self-consistent potential and after some
transient it falls back to the previous steady-state value. This is
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clearly shown in Fig. 3 for the amplitude Vg = ±3.0, Tg = 50,
and a faster decay rate γ = 0.6.

Intuitively one would expect that by increasing (decreasing)
the on-site energy of the Hubbard site the density decreases
(increases). However, the highest (lowest) stable steady-state
density is obtained with a positive (negative) gate. This is due
to the fact that in our case the on-site energy of the Hubbard
site lies below the energy band of the left lead. By applying
a positive gate a finite hybridization occurs, leading to the
migration of extra charge from the left lead to the Hubbard
site. A similar argument explains the reduction of the density
on the impurity site when a negative gate is turned on.

In the lower panels of Fig. 3 we plot the densities obtained
within the 2B and GW self-energy approximations. We
have applied the bias voltage and a gate pulse of the form
Vg(t) = Vge

−γ t for t > 0 with Vg = 0, ±3. In all cases only
one steady state emerges at the end of the propagation with a
density of about 1.0. It is worth observing that the 2B and
GW steady-state values of the densities are close to each
other, indicating that the single-bubble diagram, common to
both approximations, is the dominant term of the perturbative
expansion in this case.21

By time propagation we have shown that the three HF
densities, ñ1, ñ3, and ñ5, and the two ABALDA densities,
ñ1 and ñ3, are stable in a slightly different sense than that
of the fixed-point theorem. The fixed-point theorem does not
contain any information on the actual dynamics. Similarly, the
HF solutions ñ2 and ñ4 as well as the ABALDA solution
ñ2 are unstable in the sense that there exists no external
perturbation to drive the system toward them. Thus, the
fixed-point theorem provides us with a good criterion to
establish whether a given steady state can be reached or not.
This criterion is certainly rigorous in the limit of adiabatic
switchings but, as we just found, its validity extends well
beyond the adiabatic regime. The time-dependent currents for
the various approximations are shown in Fig. 5. Corresponding
to the three stable HF steady-state densities there exist only
two distinguishable values for the current IR(t) at the interface
between the Hubbard site and the right lead. The lower value
corresponds to the solutions ñ1 and ñ5, while the higher value
corresponds to the solution ñ3. The existence of only two
solutions for the current is the consequence of an approximate
particle-hole symmetry of the self-consistent equation (15);
i.e., ñ5 ∼ 1 − ñ1. One particularly appealing feature of the HF
currents is the large difference between the two steady-state
values. If this feature were achievable in the real world it would
be a highly desirable property for designing nanoscale diodes.

The particle-hole symmetry holds also for the ABALDA
and therefore the steady-state currents corresponding to the
two stable solutions are almost indistinguishable. Finally, the
2B and GW steady-state values of the currents approach the
same value independent of the gate voltage, in agreement with
the existence of a unique steady state.

If we increase the bias, the number of HF fixed-point
solutions reduces to three, of which only two are stable.
Also, if we increase the interaction strength U , the number
of stable solutions reduces to two because a small amount of
density causes a considerable change in the effective potential.
Consequently, the middle solution becomes unstable.

FIG. 5. (Color online) Time-dependent current after the sudden
switch on of the bias voltage and of a gate pulse as in Eq. (21) in the
HF (top-upper panel), ABALDA (top-lower panel), 2B (bottom-left
panel), and GW (bottom-right panel) approximations. In the HF and
ABALDA case a time-dependent switch between two different steady
states is shown.

B. Two-site Hubbard model

In this section we consider the case of two interacting sites
(NC = 2) connected to two semi-infinite, noninteracting tight-
binding leads. We choose the following parameters: Vlink =
0.4, WL = 2.2, WR = −1.2, U = 2.0, VC = V1,2 = 0.4, εα =
εF = 0, εC

1 = εC
2 = −0.6, and β = 90. The leads are half filled

and the lead bands have an energy range between εα + Wα −
2V and εα + Wα + 2V .

Within the HF approximation, the steady-state condition
(15) then has seven solutions which are shown in the upper
panel of Fig. 6. The black curve is obtained by finding the root
of the equation n2 − g2(n1,n2) = 0 at fixed n1 where g2(n1,n2)
is the right-hand side of Eq. (15) with j = 2. The red curve is
obtained in an analogous way by exchanging 1 ↔ 2. Hence the
intersections of the curves are the fixed points. The numerical
values for the steady-state densities at the two Hubbard sites
for the seven fixed points are given in Table I.

In the lower panel of Fig. 6 we show the spectral functions
corresponding to the seven different fixed points (FPs). The
spectral function for FP 1 is located mostly in an energy range
within the energy band of the right lead, while the one for FP
5 has most of its weight in the energy range of the left lead. In
contrast, FPs 6 and 7 have considerable weight in the energy
bands of both leads. The spectral functions corresponding to
FPs 2, 3, and 4 have much narrower peaks than the spectral
functions for the other fixed points.

According to the fixed-point theorem only the FPs 1, 3, 5,
and 7 are stable and we expect them to be accessible by time
propagation. In the upper left panel of Fig. 7 we show the time
evolution of the total density on the two dots, ntot(t) = n1(t) +
n2(t), in the HF approximation for a sudden switch-on of the
bias and several gate voltages starting from the equilibrium
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FIG. 6. (Color online) Upper panel: Graphical solution of the
integral in Eq. (15). Lower panel: Spectral functions for the HF
approximation with Hubbard interactions corresponding to the seven
different steady-state solutions for the density.

state with ground-state density n1 = n2 = 0.83. The steady
state corresponding to FP 1 is obtained by applying only the
bias (no gate). In the case where we apply, in addition to the
bias, a decaying gate voltage of the form (21) to both sites
with Vg,1 = Vg,2 = Vg = 3.0 and decay rate γ = 0.2, the total
density increases and after some transient evolves toward the
steady state corresponding to FP 5. In this case, lifting the
on-site energy due to the gate voltage allows for extra charge
to accumulate at the interacting sites such that the high-density
steady-state solution can be achieved. In contrast, the solution
of FP 7 can be obtained by applying the decaying gate voltage
to the first (left) site only with amplitude Vg,1 = 3.0, Vg,2 = 0
and γ = 0.2.

Surprisingly, applying a similar asymmetric gate voltage
but with a smaller amplitude (Vg,1 = 1.0,Vg,2 = 0) leads to a
very different long-time behavior. In this case the system does
not evolve toward a steady state after the transients; instead
we observe an oscillatory time-dependent density. In the long-
time limit, the time-dependent total density (purple curve in
the upper left panel of Fig. 7) oscillates with an amplitude
of the order of 10−3, around 1.96. This value corresponds
approximately to the total steady-state density of FP 3 of Fig. 6.

Despite this apparent similarity, the nature of these solutions
is very different. While for the steady state of FP 7 the charge is
mostly located at the first site, in the case of FP 3 the density on
the first site is smaller than on the second one (see Table I). The
different nature of these two cases becomes even more obvious
when looking at the time evolution of the density at the two

TABLE I. Fixed-point (FP) solutions of Eq. (15) for the steady-
state densities of two interacting Hubbard sites connected to two
biased, noninteracting leads in the HF approximation (see upper panel
of Fig. 6). The parameters are Vlink = 0.4, WL = 2.2, WR = −1.2,
U = 2.0, V1,2 = 0.4, εα = εF = 0, and εC

1 = εC
2 = −0.6.

FP 1 2 3 4 5 6 7

n1 0.094 0.150 0.124 1.098 1.867 1.129 1.794
n2 0.144 1.146 1.860 1.821 1.862 0.546 0.226

FIG. 7. (Color online) Densities and currents for the HF ap-
proximation in the case of short-range (Hubbard) and long-range
(Coulomb) interactions. A switch between different steady states by
applying exponentially decaying gate of Eq. (21) is shown.

interacting sites separately (see Fig. 8). While in the first case
(Vg,1 = 3.0, Vg,2 = 0) the steady state is attained quite rapidly,
in the second case (Vg,1 = 1.0,Vg,2 = 0) we see nondecaying
density oscillations at the individual sites with rather large
amplitudes. In the long-time limit the density oscillates thus
inducing an oscillating KS potential. The persistence of these
oscillations means that the density solves the Floquet system
of equations in which the harmonics of the potential depend on
the density itself. At first sight one might be reminded of the
nondecaying density and current oscillations which can appear
for noninteracting systems when the biased system possesses
two or more bound states. However, here we work in the HF
approximation and therefore the analysis of Refs. 54–56 needs
to be modified; see below.

FIG. 8. (Color online) Densities of the first and second site for the
HF approximation in the case of Hubbard interactions corresponding
to the middle curves in the upper left panel of Fig. 7.
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Some insight into the nature of these oscillations can be
gained from the simple model of an isolated Hubbard dimer. In
the HF approximation, the equation of motion for the electronic
density matrix ρ of the isolated dimer reads

i∂tρ(t) = [HHF(t),ρ(t)], (22)

where the HF Hamiltonian is given by

HHF(t) =
(

ε1 + Un1/2 V1,2

V1,2 ε2 + Un2/2

)
. (23)

Under the simplifying assumption ε1 = ε2 one can then
derive the equation of motion for the quantity δn(t) = n1(t) −
n2(t) = ρ11(t) − ρ22(t) which reads

δn̈ + (
4V 2

1,2 − UD
)
δn + U 2

8
(δn)3 = 0, (24)

where the constant D is related to the initial condition of
Eq. (23) and can be defined through the off-diagonal matrix
elements of the density matrix as

D = V1,2[ρ1,2(0) + ρ2,1(0)] + U

8
[δn(0)]2. (25)

We note that Eq. (24) is the equation of motion of a classi-
cal, anharmonic oscillator and therefore supports oscillating
solutions. We now check whether the model of the isolated
Hubbard dimer has anything to do with the oscillations seen in
our transport setup. To this end, we calculate D from Eq. (24),

i.e., D = δn̈
δnU

+ 4V 2
1,2

U
+ U

8 (δn)2, where the densities and their
time derivatives are taken from the transport calculation after
the transients have died out. As Eq. (24) is an approximation
for the connected Hubbard dimer, D is not constant in
time. Hence in order to compare the oscillation amplitudes
and frequencies from the transport simulations with those
resulting from Eq. (24) we averaged D over an oscillation
period. In Fig. 9 we show the dependence of the oscillation
frequency and amplitude for different switchings of the gate
[Vg,1(t) = V0 exp(−γ t), Vg,2(t) = 0, V0 = 1] as function of
the hopping V1,2 between the two sites of the Hubbard dimer
connected to biased leads and compare to the corresponding
solutions of Eq. (24). We see that both frequency and amplitude
of the isolated and connected dimer behave qualitatively
quite similar as a function of the intersite hopping and we
conclude that the model of the isolated dimer certainly captures
the physics behind these oscillations. We also would like
to point out that the regions of parameter space where the
oscillations are found appear to be quite small. For most
parameters the system actually does evolve toward one of the
steady states of Table I.

The occurrence of self-induced persistent oscillations in
the HF mean-field theory is favored by the short-range nature
of the Hubbard interaction. In fact, we also have studied a
modified version of our model where we replaced the last term
of Eq. (2) by a more long-range, Coulomb-like interaction
1
2

∑2
i = 1
σσ ′

Ui,j d̂
†
iσ d̂

†
jσ ′ d̂jσ ′ d̂iσ with

Ui,j =
{

U i = j,
U

2|i−j | i 
= j.
(26)

FIG. 9. (Color online) Oscillation frequency and amplitude of
the density oscillations found in HF for certain gate switchings of the
Hubbard dimer connected to biased leads as function of the hopping
between the Hubbard sites. For comparison, oscillation frequencies
and amplitudes are given for the isolated Hubbard dimer in HF
approximation described by Eq. (24).

In this case we have not found any oscillating solutions in
the long-time limit. We have found two stable steady-state
solutions accessible by time propagation. The first steady-state
solution has densities n1 = 1.06, n2 = 1.09, the second one
has n1 = 0.11, n2 = 0.13. The spectral functions correspond-
ing to these solutions (see Fig. 10) are localized around the
Fermi level of the left or right lead, respectively. The inclusion
of the long-range interaction destroys the states where the first
peak is localized on the right lead energy band and the second
peak is localized to the left lead energy band. Because the
magnitude of the interaction felt by the electron on the site
is now higher, the density on the sites is decreased and the
solution corresponding to the highest density is at half-filling.
Also in this case we are able to switch between the two steady
states. The currents corresponding to these two solutions for
the density have almost the same magnitude.

FIG. 10. (Color online) Densities and currents for the 2B
approximation short-range (Hubbard) and long-range (Coulomb)
interactions are used. Lower panel: Spectral functions for the different
approximations at the end of the time propagation.
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FIG. 11. (Color online) Upper panel: Graphical solution of the
integral in Eq. (15). Lower panel: Spectral functions for the BALDA
with Hubbard interactions corresponding to the five different steady-
state solutions for the density.

In Fig. 10 we show the time-dependent densities and
currents for the 2B approximation. Again within the correlated
approximations we find only one solution for the density and
current. In the lower panels of Fig. 10 we show the spectral
functions for the 2B and GW approximations compared to the
spectral functions of the HF approximation. The 2B and GW

spectral functions are qualitatively quite different from those
of the HF approximation. Instead of the two-peak structure of
the HF approximation, with the 2B and GW approximations
we have one very broad peak with much lower maximum.

We also studied the possibility of multiple steady states for
the same model within the BALDA. Using the same parameters
as above, the BALDA has multiple solutions. However, at least
one fixed point has a density on one of the dots very close to
unity, exactly where the BALDA potential is discontinuous.
For a single interacting dot, this discontinuity has been shown
to be closely related to the Coulomb blockade phenomenon.45

For the purposes of the present work we avoid the regime of
integer occupancy in an ABALDA treatment by changing the
on-site energies of the interacting sites in an asymmetric way
such that εC

1 = −0.04 and εC
2 = 0.2. With these modifications,

FIG. 12. (Color online) Time-dependent density and current for
the ABALDA with different applied gates.

TABLE II. Fixed-point (FP) solutions of Eq. (15) for the steady-
state densities of two interacting Hubbard sites connected to two
biased, noninteracting leads in the BALDA approximation (see upper
panel of Fig. 11). The parameters are Vlink = 0.4, WL = 2.2, WR =
−1.2, U = 2.0, V1,2 = 0.4, εα = εF = 0, and εC

1 = −0.04, εC
2 = 0.2.

FP 1 2 3 4 5

n1 0.147 0.632 1.506 1.585 1.624
n2 1.685 1.658 1.466 0.674 0.250

the two coupled equations given by Eq. (15) are solved
simultaneously, yielding five fixed points (see Fig. 11 and
Table II). Among these five fixed points, FP 1, FP 3, and FP 5
are stable, the other two unstable.

The spectral functions corresponding to FP 3 and FP 5 have
two well-separated smooth peaks, while the one corresponding
to FP 1 has two sharp peaks, the first one located at ω1 =
−0.168 outside the energy range of the left lead, the second
one at ω2 = 2.16 outside the energy range of the right lead.

Again, the stable solutions are accessible by time propaga-
tion (see Fig. 12). Upon application of a sudden bias in the leads
at t = 0, the system approaches the third solution if no external
gate voltage is turned on. On the other hand, if a gate voltage of
the form (21) is applied only to the second site, with amplitude
Vg,2 = −2.0 and γ = 0.2, the system attains a steady state with
a density corresponding to FP 5. As before switching between
these two steady-state densities is possible by changing the
sign of the applied gate. A similar gate voltage applied only
to the second site and smaller amplitude (Vg = −1.0) leads
to an oscillatory time-dependent density, whose average total
density is close to the one of FP 1.

The frequency of the time-dependent density is ω = 2.24
which is close to the energy difference (ω = 2.34) between
the peaks of spectral function. Hence, these oscillations are
due to the existence of bound states in the biased interacting
system. One possible way to explain the role of bound states
in the biased KS Hamiltonian is that in the long-time limit
the KS potentials are time dependent (with the bound-state
eigenenergy differences as prominent frequencies) leading
again to time-dependent currents and densities (by virtue of
Floquet’s theorem). This is evidently achieved in adiabatic
approximations with the XC potential depending only on the
local density such as the ABALDA and HF approximation.

VI. CONCLUSIONS

In this paper we have investigated by means of real-
time propagation within MBPT and TDDFT the existence
of multiple steady states in single and double interacting
quantum dot systems connected to semi-infinite leads. Within
the framework of MBPT one can solve the steady-state MBPT
equation without necessarily going through the whole time
propagation. This can be done by an iterative procedure like in
Ref. 57, for example. In this case, starting from different initial
guesses for the Green’s function, bistability would manifest
itself in the convergence to more than one self-consistent
solution. The advantage of the KB equations over the steady-
state MBPT equations is that during the transient regime the
Green’s function explores a finite portion of the domain of all
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possible Green’s functions. Thus a single time propagation is
similar to iteratively solving the steady-state MBPT equations
for a large number of initial guesses.

In order to find the parameter region for bistability we first
solved the self-consistent steady-state equations within the
HF and BALDA approximation and determined the regime
for which multiple solutions occur. We show that only the
stable solutions are accessible by time propagation. Moreover,
we find that by superimposing an exponentially decaying
gate voltage pulse to the external bias, it is possible to
reach the various stable solutions and also to switch between
them. For the same parameters and driving fields, we then
included dynamical XC effects by solving the Kadanoff-Baym
equations with MBPT self-energies at the 2B and GW level of
approximation. In all studied cases where adiabatic DFT and
HF theory predict bistability dynamical XC effects destroy the
phenomenon. Here we emphasize that we have performed 2B
and GW calculations for many more parameter sets than those
for which we have shown results in the present work. We have
found no indication for the existence of multiple steady states
for any of these sets. However, due to the vastness of the pa-
rameter space, we cannot rule out completely the possibility of
multiple steady states when dynamical XC effects are included.

We wish to point out that even though ABALDA already
contains correlations it is based on two approximations: the

local and the adiabatic one. For any nonlocal but adiabatic
approximation to the TDDFT functionals one could still derive
a self-consistency condition for the steady-state density in
the form of coupled, nonlinear equations. Because of this
nonlinearity multiple solutions, i.e., multiple steady states,
can be possible. Therefore our results suggest that it is
the adiabatic approximation which permits bistability while
we expect that the inclusion of memory effects suppresses
it. We also conclude that bistable regimes induced by the
electron-electron interaction only are unlikely to be found
in Hubbard or extended Hubbard model nanojunctions, and
that other degrees of freedom, such as molecular vibrations or
nuclear coordinates, must be taken into account.
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