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a b s t r a c t

We present some approaches to the computation of ultra-fast laser pulses capable of selectively breaking
molecular bonds. The calculations are based on a mixed quantum-classical description: The electrons are
treated quantum mechanically (making use of time-dependent density-functional theory), whereas the
nuclei are treated classically. The temporal shape of the pulses is tailored to maximize a control target
functional which is designed to produce the desired molecular cleavage. The precise definition of this
functional is a crucial ingredient: we explore expressions based on the forces, on the momenta and on
the velocities of the nuclei. The algorithm used to find the optimum pulse is also relevant; we test both
direct gradient-free algorithms, as well as schemes based on formal optimal control theory. The tests are
performed both on one dimensional models of atomic chains, and on first-principles descriptions of
molecules.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Soon after its first operation [1], the laser was expected to be-
come the ultimate surgical tool at the nanoscopic level: Light, at
convenient wave-lengths, monochromatic, coherent, and intense
[2], was believed to open the avenue to selectively break (or create)
molecular bonds. Unfortunately, the early attempts to perform this
kind of photo-chemistry were only occasionally successful [3,4].
These attempts used ‘‘simple’’ monochromatic lasers, tinkering
only with two parameters: the frequency and the intensity.
However, the energy, tuned to a particular vibrational frequency
and initially deposited on the corresponding bond, is soon re-dis-
tributed to the rest of the modes, and produces undesired global
heating instead of selective cleavage [5].

The ‘‘controlled’’ laser assisted photo-chemistry advanced along
with improvements on laser technology, with methodologies such
as the control of quantum interference proposed by Brumer and
Shapiro [6–8], the ‘‘pump-dump’’ control proposed by Tannor
and Rice [9,10], stimulated Raman adiabatic passage [11], wave-
packet interferometry [12], and others [13,14]. The key ingredients,
beyond mere mono-chromaticity and intensity, were shown to be
coherence (and therefore, interference), detailed shaping, and ul-
tra-short pulse duration (in the femto-second time scale). The most
successful technique is adaptive feedback control (AFC), as pro-
posed by Judson and Rabitz [15], and first realized in 1997 [16].
ll rights reserved.
There are two important components in an AFC experiment: the
pulse shaper [17], and the search algorithm fed by the repeated
measurement outcome. The former is an instrument that allows
to almost arbitrarily design laser pulses. The increasing versatility
of modern laser sources (regarding pulse length, power, and acces-
sible frequencies), and the capacity of pulse shapers to modify the
produced pulses, set the boundaries that theoretical studies such
as the one presented in this work must respect; however these
boundaries are rapidly pushed further, allowing more versatile
pulses.

Quantum optimal control theory (QOCT) [18–21] is the most
general theoretical framework aimed to the prediction of laser
pulses that are optimal for a given task. It is the translation to
the quantum realm of a very broad mathematical area, optimal
control, that is best formulated in the language of systems theory
[22,23]. Its use for quantum processes was initiated in the 80s
[19–21] – responding to the initial experimental stir. In some
way, QOCT encompasses all the previously mentioned optimiza-
tion methods (in as much as it may describe them theoretically).
The theory is constructed on top of some chosen level of approxi-
mation for the description of the process that is to be optimized.
Here lies the main limitation of QOCT: [14] it may only be predic-
tive if the system is simple enough to allow for an accurate approx-
imation of its evolution. In most cases, however, the process is too
complex.

If some reliable predictive power is to be expected from any
QOCT calculation, one should attempt a first-principles description.
In particular, in the regime of interest, the dynamics of the elec-
trons should be carefully treated: high intensity electric fields at
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high frequencies affect directly the electronic degrees of freedom.
Indeed, when many-electron systems are irradiated with strong
femtosecond pulses a number of interesting non-trivial photo-
reactions may take place: above-threshold or tunnel ionization,
bond hardening or softening, high harmonic generation, photo-
isomerization, photo-fragmentation, Coulomb explosion, etc.
[24–26]. Yet most of the computational work until now has relied
on simplified models, and has usually worked with nuclear wave
packets – defined on a few relevant reaction variables, after a
reduction of dimensionality has been postulated – moving on
one or a few Born–Oppenheimer potential energy surfaces, and
therefore mostly ignoring the dynamic behavior of the electrons.
Direct, first-principles, electronic control has been scarcely at-
tempted [27], unless for one-electron cases [28–30].

One viable alternative to treat electronic motion in an ab initio
way is time-dependent density-functional theory (TDDFT) [31,32].
Recently some of us have demonstrated the feasibility of perform-
ing QOCT with TDDFT [33]. This was not obvious due to the non-
linear character of the TDDFT equations: the usual QOCT equations
assume a standard, linear Schrödinger-like evolution, and the
resulting QOCT equations are correspondingly simple. However,
the presence of the Hartree, exchange and correlation term in the
TDDFT equations need special care.

TDDFT offers reasonable accuracy when dealing with the non-
linear response of molecular systems, with a fraction of the cost
of methods based on the wave function. Furthermore, the electronic
system described within TDDFT may then be coupled to the ionic
motion in a mixed quantum–classical description [34–37]. This
model will obviously ignore quantum nuclear effects, but may be
sufficient for the description of many processes. In this work we
present our first results based on this combination. In Section 2,
the essential equations are displayed, as well as a brief description
of the numerical procedure. Section 3 describes the results of the
optimizations when the target functional is defined in terms of
the values of the forces on the nuclei at the end of the laser pulse,
for 1D models, whereas in Section 4, the target functional is defined
in terms of the momenta. In Section 5, the attempt to selectively
break molecular chains is described. Finally, Sections 6 and 7 dis-
play results for fully ab initio 3D calculations.

2. Methodology

2.1. Essentials of QOCT

We consider a quantum mechanical system governed by Schrö-
dinger’s equation during the time interval [0,T] (atomic units will
be used hereafter):

i
@W
@t
ðx; tÞ ¼ bH½u; t�Wðx; tÞ; ð1Þ

Wðx;0Þ ¼ W0ðxÞ; ð2Þ
where x is the full set of quantum coordinates, and u is a control,
typically a set of parameters that determine the precise shape of
an external potential applied to the system. Mathematically, we
can distinguish two types of ‘‘representation’’ for the control u:

1. u is a real valued continuous function defined on the time
interval of interest (the control function); we will call this a
‘‘real-time’’ representation of the control. For example, the
Hamiltonian may have the form:
bH½u; t� ¼ bH0 þ uðtÞbD: ð3Þ
2. u is a set of N real parameters that modifies the precise shape of
the Hamiltonian; typically, this set of parameters fixes the form
of a control function; we will call this a ‘‘parameterized’’ repre-
sentation of the control.
In any case, the specification of u, together with an initial value
condition, W(0) = W0 determines the full evolution of the system,
W[u], via the propagation of Schrödinger’s equation.

We wish to maximize the function G,

G½u� ¼ F½W½u�;u�; ð4Þ

where F is the so-called ‘‘target functional’’; in many cases it is split
into two parts, F[W,u] = J1[W] + J2[u], so that J1 only depends on the
state of the system, and J2 is called the ‘‘penalty’’, and depends
explicitly on the control u. An important distinction should be made
regarding J1:

1. It may depend on the full evolution of the system during the
time interval [0,T]; this is usually called a time-dependent tar-
get. We may write this as J1½W� ¼ J½0;T�1 ½W�, where the J½0;T�1 ½W�
functional admits continuous functional derivatives, in particu-

lar dJ½0;T�1
dW�ðx;tÞ is continuous at t = T.

2. J1 may only depend on the state of the system at the end of the
propagation, which we may write as J1½W� ¼ JT

1½WðTÞ�.

Of course, J1 may be defined as a combination of the two
options, i.e.:

J1½W� ¼ J½0;T�1 ½W� þ JT
1½WðTÞ�: ð5Þ

Note that, in this case:

dJ1

dW�ðx; tÞ ¼
dJ½0;T�1

dW�ðx; tÞ þ dðt � TÞ dJT
1

dW�ðx; TÞ : ð6Þ

In most cases these functionals are defined as the expectation value
of some observable bO. For example:

JT
1½WðTÞ� ¼ hWðTÞ j bO j WðTÞi or : ð7Þ

J½0;T�1 ½WðTÞ� ¼
Z T

0
dthWðtÞ j bOðtÞ j WðtÞi: ð8Þ

One needs now an optimization algorithm to find the maximum (or
maxima) of G. Two broad families can be distinguished: gradient-free
procedures, that only require some means to compute the value of G
given a control input u, and gradient-based procedures, that also
necessitate the computation of the gradient of G with respect to u
(more precisely, the functional derivative if u is a continuous function
in time). We will not repeat here a derivation that can be found else-
where in several forms [20,21,38,39]; the key equations are:

ruG½u� ¼ ruF½W;u�jW¼W½u� þ 2Im
Z T

0
dt v½u�ðtÞ j ru

bH½u; t� j W½u�ðtÞD E
;

ð9Þ

in case u is a set of real parameters, and:

dG
duðtÞ ¼

dF½W;u�
duðtÞ

����
W¼W½u�

þ 2Imhv½u�ðtÞ j bD j W½u�ðtÞi; ð10Þ

if u is a function in time, and the Hamiltonian is given by Eq. (3).
Note that a new ‘‘wave function’’, v[u], has been introduced; it

is given by the solution of:

i
@v½u�
@t
ðx; tÞ ¼ bHy½u; t�v½u�ðx; tÞ � i

dJ½0;T�1

dW�½u�ðx; tÞ ; ð11Þ

v½u�ðx; TÞ ¼ dJT
1

dW�½u�ðx; TÞ : ð12Þ

This is similar to the original Schrödinger’s equation (Eqs. (1) and
(2)), except: (1) It may be inhomogeneous, if J½0;T�1 is not zero (i.e.
if the target is time-dependent [38,39]), and (2) The initial condition
is given at the final time t = T, which implies it must be propagated
backwards.
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The computation of the gradient or functional derivative of G,
therefore, requires W[u] and v[u], which are obtained by first prop-
agating Eq. (1) forwards, and then Eq. (11) backwards. The maxima
of G are found at the critical points ruG[u] = 0 or dG

duðtÞ ¼ 0; in order
to arrive to these maxima one can use a variety of algorithms, some
of which are listed in Section 2.3.2.

2.2. Mixed quantum–classical description with TDDFT

Instead of solving the many-electron Schrödinger equation,
TDDFT allows to work with a set of one-electron equations, the
Kohn–Sham (KS) system, corresponding to a fictitious system
whose one-particle density is by construction identical to that of
the real one:

i
@ui

@t
ð~r; tÞ ¼ �1

2
r2uið~r; tÞ þ vextð~r; tÞ þ vHartree½nt�ð~rÞ½

þ vxc½n�ð~r; tÞ�uið~r; tÞ; ð13Þ

nð~r; tÞ ¼
XN

i¼1

2 j uið~r; tÞj
2 � ntð~rÞ: ð14Þ

We will assume a system with 2N electrons in a spin compensated
configuration, evolving in a spin independent Hamiltonian. This
means N doubly occupied KS orbitals ui, i = 1, . . . ,N. The system
evolves on an external time-dependent potential vext, that may in-
clude the interaction with a set of nuclei, as well as external electric
fields. The Hartree term vHartree is the classic electrostatic potential,
and the rest of the electron–electron interaction is encoded in the
exchange and correlation potential vxc. In this work, we will only
use the adiabatic extension of the local density approximation
(LDA) [40], although the extension to other more sophisticated
schemes is straightforward.

The external potential can depend on a control function, and
therefore control theory can be employed to find optimal evolutions
of the KS system. Note, however, that the KS equations are not akin
to the conventional Schrödinger equation, since they are non-linear.
The QOCT expressions presented above are therefore not valid; the
correct equations have been presented elsewhere [33]; however,
in this work we will either (1) take the independent electron approx-
imation, which amounts to ignoring the mentioned non-linearity,
for model calculations, or (2) utilize a gradient-free version of QOCT,
for which we can use the full-fledged version of TDDFT.

In order to describe the combined coupled movement of elec-
trons and (classical) nuclei, one can perform Ehrenfest dynamics
on top of TDDFT [37]. The external term vext will couple the elec-
trons to Nnuc nuclei located at positions ~RaðtÞ through an expres-
sion in the form:

vext ~r; t; R
!

bðtÞ
� �� �

¼
XNnuc

a¼1

�za

j R
!

aðtÞ �~r j
þ E
!
ðtÞ �~r: ð15Þ

The evolution of the nuclear positions is then governed by an Ehren-
fest equation in the form:

ma
d2

dt2 R
!

aðtÞ ¼
XNnuc

b¼1

zazb
R
!

aðtÞ � R
!

bðtÞ

j R
!

aðtÞ � R
!

bðtÞj3
þ za E

!
ðtÞ

�
Z

d3rnð~r; tÞr
R
!

a
v ext ~r; t; R

!
bðtÞ

� �� �
: ð16Þ
2.3. Numerical implementation

All the ideas described above have been implemented in the
octopus code. Since the numerical details of this platform are de-
scribed elsewhere [41,42], here we will only list some essential
points. The laser field and the optimization algorithms are de-
scribed below with more detail.

� Wave functions and densities are represented on a regular rect-
angular real space mesh. This is a suitable scheme to describe
high intensity laser-electron interactions, since the electronic
density visits regions in space far from the localized basis sets
typically used in other schemes. Furthermore, the intrinsic
locality allows for easy parallelization, and the only parameters
controlling convergence are the grid spacing and the simulation
box size.
� The electron–ion interaction is modelled with pseudopotentials.

In this way, the Coulomb singularity is avoided, and the core
electrons are removed from the calculation. For the first results
described below, however, we will use 1D models, and the soft-
Coulomb interaction to avoid singularities.
� The KS orbitals are evolved in real time with the help of a num-

ber of propagating algorithms [43]. This is crucial since all algo-
rithms require multiple propagations.
� The code performs realistic 3D calculations, but it also allows

1D and 2D models, such as the ones we will present below.

2.3.1. The laser field
We will assume that laser pulses can be described in the dipole

approximation, which is valid given the wave lengths and intensi-
ties that will be considered. In consequence, it suffices with an
electric field in the form:

E
!
ðtÞ ¼ �ðtÞ~p; ð17Þ

where ~p is a unit vector that determines the polarization direction,
and �(t) determines the temporal dependence, and is the object to
be optimized – i.e. the control function.

Not any function in time is admissible as a solution; there are
physical and experimental constraints that must be respected.
For example, an important physical constraint is:Z T

0
dt�ðtÞ ¼ 0: ð18Þ

This condition follows from Maxwell’s equations for a freely propa-
gating pulse in the electric dipole approximation [44]. Also, the
pulses must obviously start and end at zero:

�ð0Þ ¼ �ðTÞ ¼ 0: ð19Þ

It is important to reduce the search space to functions that are
experimentally accessible, which means a limitation on the accessi-
ble frequency components, and on the intensities. Regarding the
latter, usually it is done by considering the integrated intensity or
fluence, defined as:

F½�� ¼
Z T

0
dt�2ðtÞ: ð20Þ

Spectral constraints can also be imposed either by penalizing the
undesired frequencies in the definition of the target [45], or by
restricting from the start the search space to the correct subspace.

As discussed earlier, we may use a real-time representation, and
therefore �(t) is directly the control object u, or a parameterized
representation, in which this control function �(t) is determined
by a set of parameters u. This distinction is relevant for the math-
ematical derivations (since in the former case functional deriva-
tives must be used, whereas in the latter case one uses normal
gradients). Numerically, however, a function in real time must also
be discretized, and therefore the distinction disappears. Neverthe-
less, typically the number of degrees of freedom (number of grid
points in time) will be much larger, and therefore the algorithms
utilized will differ.
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Regarding the choices for the parameterization, it is a natural
choice to expand the control field in a basis set, and to establish
the coefficients of this expansion as the parameters:

�ðtÞ ¼
XN

n¼1

~�ngnðtÞ: ð21Þ

N is the dimension of the real basis set {gn(t)}. It is chosen to be
orthonormal over the interval [0,T]:Z T

0
dtgmðtÞgnðtÞ ¼ dmn: ð22Þ

In our calculations, two basis sets have been used: a sine basis:

gnðtÞ ¼
ffiffiffi
2
T

r
sin

p
T

nt
� 	

; n ¼ 1 . . . N; ð23Þ

or a normal Fourier basis:

gnðtÞ ¼

ffiffi
2
T

q
cos 2p

T nt

 �

; n ¼ 1; . . . ; N
2 ;ffiffi

2
T

q
sin 2p

T n� N
2


 �
t


 �
; n ¼ N

2 þ 1

 �

; . . . ;N:

8><
>: ð24Þ

The representation in these basis sets has the advantage that spec-
tral constraints can be automatically enforced: the maximum fre-
quency is given by the choice of N, and we we will not include
the zero-frequency component, in order to satisfy condition (18).

We can directly choose the basis set expansion coefficients as
control parameters, or else constrain further the search space to
meet other physical or experimental requirements, by defining
the coefficients as functions of a reduced set of parameters:
~�n ¼ ~�n½u�. Our choices have been the following:

� A constrained sine series. The sine series, Eq. (23) automatically
fulfills the condition given by Eq. (19). To meet condition (18),
however, the following relation would have to be fulfilled:
XN=2�1

m¼0

~�ð2mþ1Þ

ð2mþ 1Þ ¼ 0: ð25Þ
For some of the cases presented below, we also enforced a fixed flu-
ence. As function of any orthonormal basis set coefficients, the flu-
ence is given by:
F½~�� ¼
XN

n¼1

~�2
n: ð26Þ
Setting the fluence to a predefined value F 0 amounts to requiring
the vector ~� to belong to a hypersphere. We may then transform ~�
into hyperspherical coordinates; the N � 1 angles hj will span the
new search space, of one dimension less.
� A constrained Fourier series. If the zero-th frequency is left out, a

Fourier series, Eq. (24), automatically fulfills condition (18).
Condition (19) is met if:
~�1 ¼ �
XN=2

n¼2

~�n: ð27Þ
To fulfill this condition, a first parameter transformation can be de-
fined by
~�1 ¼: �
XN=2�1

n¼1

an;

~�ðnþ1Þ ¼: an; n ¼ 1; . . . ; ðN � 1Þ:
ð28Þ
In terms of the new coordinates, it is trivial to see that the fluence is
given by a bilinear expression:
F½a� ¼ aT Sa; ð29Þ
for a (N � 1) � (N � 1) symmetric matrix S. It can be diagonalized by
performing a new change of coordinates based on an orthonormal
matrix U:
UT SU ¼

s1 0

. .
.

0 sðN�1Þ

0
BB@

1
CCA ð30Þ
and if we now define a final change of coordinates in the form:
b ¼ LUTa; ð31Þ
where:
L :¼

ffiffiffiffiffi
s1
p

0

. .
.

0
ffiffiffiffiffiffiffiffiffiffiffiffi
sðN�1Þ
p

0
BB@

1
CCA ð32Þ
then the fluence has the simple form:
F½b� ¼
XN�1

n¼1

b2
j : ð33Þ
Once we have this form, in order to fix the fluence to a predefined
value F 0 one can once again make a coordinate transformation to
hyperspherical coordinates, and use the N � 2 angles as search
space.

2.3.2. Optimization algorithms
There are two broad families of optimization algorithms: gradi-

ent-free and gradient-based schemes. We will utilize both in the
application presented below.

Gradient-free. In experimental control experiments, the gradient
of the merit function is seldom available, and the most used gradi-
ent-free algorithms belong to the ‘‘evolutionary’’ or ‘‘genetic’’ fam-
ilies. These are specifically designed for search spaces with large
number of dimensions, typically discrete [46,47].

However, in our code we have opted for two different schemes,
which are sufficient for a moderate number of continuous degrees
of freedom: the classic simplex algorithm of Nelder and Mead [48],
and Powell’s NEWUOA algorithm [49], newer and more efficient.

Gradient-based. If the control function is described in any
parameterized representation, then we have used a standard con-
jugate gradient algorithm, the Broyden–Fletcher–Goldfarb–Shanno
variant [50].

However, if the control function is represented directly in real
time (which usually implies a large number of degrees of freedom),
a number of different algorithms that were specifically developed
within the field of QOCT (or adapted to it) have been proposed.
These can provide very fast convergence, if they are applicable.
In particular, very successful techniques are the Krotov method
[51] and the monotonically convergent techniques proposed by
Zhu and collaborators [52,53]. In some of the examples given be-
low, we will use one of these latter techniques [52].

Note that if the control function is constrained in any way (as it
happens for our laser fields), there exist local maxima or ‘‘traps’’in
the control landscape [54]. Thus, we will find, no matter what opti-
mization algorithm is used, these local maxima when the searches
are performed. This will be manifested by the initial-pulse depen-
dence of the final results.

3. Results: control targets based on the forces

During the breaking of a bond, the forces that act on the two
separating nuclei should have more or less opposite directions in
space, i.e., a naive but reasonable attempt to define a bond-break-
ing target is to do it in terms of the forces: one can attempt the
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maximization of the force difference between the nuclei that must
be separated, and the minimization of the forces between the nu-
clei remaining in each fragment. In this section we describe a first
attempt in which the target includes the value of the forces only at
the end of the action of the pulse – it is, therefore, a static target.

We will assume that the laser pulse is short, so that during its
action the nuclei do not move significantly; therefore the optimiza-
tion calculations will be performed with frozen nuclei. The idea is
that the pulse should be able to place the electrons on a dissociat-
ing state. Later, the optimized pulse will be tested without the
fixed nuclei restriction. In this ‘‘bond breaking test run’’, therefore,
the calculation was based on the mixed quantum–classical
description described earlier.

We used a simple 1D model of a triatomic Hydrogen molecule
(see Fig. 1), with two non-interacting electrons. The electron-nu-
cleus interaction is modelled with a soft Coulomb potential:

vnucðx; xiÞ ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ 1
q ; ð34Þ

where x is the electronic coordinate, and xi is the nuclear position of
nucleus i. Since we have two independent electrons evolving in a
spin-independent Hamiltonian, we can assume the system to be
permanently in a singlet state: both the two electrons occupy the
same orbital W, which is initially the ground state. It evolves gov-
erned by the Hamiltonian:

bH½�; t� ¼ �1
2
@2

x þ x̂�ðtÞ þ
X3

i¼1

vnucðx̂; xiÞ: ð35Þ

The temporal dependence of the laser field is determined by the
function �(t), for which we will consider in this case a real time
representation.

The target functional F will be divided into the object that truly
needs to be optimized, J1, and a penalty function J2:

F½W; �� ¼ J1½W� þ J2½��: ð36Þ

The task of J2 is to prevent unphysically large fluences:

J2½�� ¼ �aF½�� ¼ �a
Z T

0
dt�2ðtÞ: ð37Þ

The constant a is the ‘‘penalty factor’’; it is positive, and it regulates
the weight that is put in the low fluence condition.

The definition that we choose for J1 is:

J1½W� ¼ ðF2½WðTÞ� � F3½WðTÞ�Þ � jF1½WðTÞ� � F2½WðTÞ�j2; ð38Þ

where Fi[W(T)] is the force acting on nucleus i at the end of the
pulse action, and is given by:

Fi½WðTÞ� ¼ �2hWðTÞ j @xi
v nucðx̂; xiÞ j WðTÞi þ

X
j–i

ZiZjðxi � xjÞ
jxi � xjj3

¼
Z

dxnðx; TÞ@xvnucðx̂; xiÞ þ
X
j–i

ZiZj xi � xj

 �
jxi � xjj3

: ð39Þ
Fig. 1. Sketch of the 1D test model. The direction of the arrows indicates the
direction of the force optimization.
This definition of J1 attempts to maximize the force difference be-
tween nucleus 2 and 3, and minimize the force between nucleus
1 and 2. There are some parameters in this expressions that one
can experiment with: the second term in the right hand side of
Eq. (38) could be multiplied by a weighting factor, or the square
could be eliminated or changed by other exponent. Note that this
type of force target is an explicit functional of the density
n(x,T) = 2jW(x,T)j2 – this is not so relevant in the independent elec-
trons approximation taken in this case, but it is in the Kohn–Sham
case that will be discussed later.

We must now adapt the QOCT Eqs. (1), (2), (11), (12) and (10) to
this particular case. Schrödinger’s equation, together with its initial
condition, (1) and (2), obviously do not change. The evolution
equation for the auxiliary v wave function is in this case given by:

i
@v½��
@t
ðx; tÞ ¼ bH½�; t�v½��ðx; tÞ; ð40Þ

v½��ðx; TÞ ¼ OðxÞWðx; TÞ; ð41Þ

where

OðxÞ ¼ @x½vnucðx; x2Þ � vnucðx; x3Þ� � 2½F1½WðTÞ�
� F2½WðTÞ��@x½vnucðx; x1Þ � v nucðx; x2Þ�: ð42Þ

Finally, Eq. (10) takes now the form:

dG
d�ðtÞ ¼ �2a�ðtÞ þ 2Imhv½��ðtÞ j x̂ j W½��ðtÞi: ð43Þ

At the maxima, this functional derivative is null, and therefore the
solution field will be given by:

�ðtÞ ¼ 1
a

Imhv½��ðtÞ j x̂ j W½��ðtÞi: ð44Þ

In order to solve these equations, we chose the algorithm of Zhu and
Rabitz [53]. This is a strictly monotonically convergent algorithm, as
long as the target functional has the form of an expectation value, a
condition that does not hold in our case. The algorithm requires an
initial guess, which is then iteratively improved; we chose a sine
wave with sine-shaped envelope (see Fig. 2):

�ð0ÞðtÞ ¼ A0 sin
p
T

t
� 	

sinðx0tÞ: ð45Þ

We used a laser pulse duration of T = 400 a.u. and an amplitude of
A0 = 7 � 10�2 a.u. We tested several frequencies for the initial field:
x0 = (1,2, . . . ,9) � 10�2 a.u. (note that the final yield will depend on
the choice of the initial guess).

We found that convergence is by no means guaranteed – only 3
of the 9 optimization runs showed a convergent behavior. Further-
more we observe that the convergence is not monotonic. This is
demonstrated in Fig. 2 where we show, on the left panel, the con-
vergence history for the case x0 = 4 � 10�2 a.u. (all other cases were
qualitatively similar). The right panel shows the initial and the
converged laser pulse.
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We use the latter to check whether or not the bond breaks; we
let evolve the system for 1000 a.u. (i.e., also after the pulse van-
ishes) with moving nuclei. Fig. 3 displays the forces and positions
of the three nuclei during this process. We first observe that the
forces obtained in the optimization run are not identical to the
forces computed during this bond-breaking test run, since in this
case the nuclei have been free to move during the short laser pulse.
However, the differences were small, which validated (for this par-
ticular case) our static nuclei approximation. A second important
observation is that the amplitudes of the force oscillations before
and after the end of the pulse were of the order of, and even larger
than, the optimized forces at the end of the pulse.

In Fig. 3 (right), we observe that we got a complete atomization
of the test model in this run – which is not the objective. This neg-
ative result was typical of all runs: Either the test model was still
bound and the nuclei just oscillated around their equilibrium posi-
tions for t > 400 a.u., or we got full atomization, as in the case pre-
sented. This latter case was triggered by a strong electronic
ionization.

In view of the strong force oscillations observed, we may con-
clude that the main reason for this negative outcome is the time-
independent character of our control target: the forces have a
strong oscillatory character, and controlling them at a single mo-
ment in time does not suffice. This consideration leads naturally
to the subject of the next section: the definition of the control tar-
gets in terms of the full history of the forces – their integrated val-
ues, or in other words, the momenta.
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4. Results: control targets based on the momenta

In this section, we explore the option of defining the target
functional in terms of the momenta of the nuclei at the end of
the pulse. For this purpose, we used the same 1D model defined
in the previous chapter.

The momenta are nothing else than the integrated forces:

pi½W� ¼
Z T

0
dsFi½WðsÞ�; ð46Þ

and the definition of the target functional F is simply done by
replacing forces by momenta:

J1½W� ¼ ðp2½W� � p3½W�Þ � jp1½W� � p2½W�j
2
: ð47Þ

Qualitatively, however, the problem changes, since pi[W] are
functionals of the full evolution of the system, i.e. we confront a
time-dependent target. The three cases presented below differ in
the manner in which the laser field is defined or restricted, and
on the optimization algorithm.
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4.1. Gradient free optimization algorithm with fixed nuclei

In this first case, we used a parameterized representation for the
control function (the electric field), in particular the constrained
sine series (see Section 2.3.1): the search space is spanned by a
set of hyperspherical angles h = {hj}, and therefore the fluence is
constant (making unnecessary the introduction of a penalty func-
tion J2).

We test now a gradient-free procedure for the maximization of
the function G[h] = F[W[h],h] = J1[W[h]], in particular the ‘‘downhill
simplex’’ method from Nelder and Mead [48]. Each function evalu-
ation amounts to one forward propagation (the backwards propa-
gations are in this case unnecessary). As in the previous section, we
used very short pulses and assumed the fixed-nuclei approxima-
tion during the pulse action. The optimization runs were followed
by the corresponding ‘‘bond-breaking test runs’’, in which the nu-
clei are allowed to move to check that the molecule breaks in the
intended way.

As an initial guess for the pulse, we used, once again:

�ð0ÞðtÞ ¼ A0 sin
p
T

t
� 	

sinðx0tÞ: ð48Þ

We performed several calculations with varying values of
x0 : x0 = (4. . .19) � 10�2 a.u. The amplitude A0 is adjusted so that
all optimizations are performed with the same (constant) fluence.
The propagating time was chosen to be T = 200 a.u. All functions
were then expanded in a sine Fourier series, with requencies
xn ¼ p

T n for n = 1,2, . . . ,12. This means 11 degrees of freedom for
the search space, once the transformation to hyperspherical coordi-
nates was done.

All optimizations converged, and of those, half of them led to
the sought bond destruction. We display results for one of the runs
(x0 = 19 � 10�2 a.u.), since all of them were qualitatively similar.
Fig. 4 (left) shows the convergence history of F. The right side
shows the initial and the optimized laser pulse (iteration step
100). It is clearly visible that this optimized pulse does not contain
very high frequency components, compared to the pulse obtained
optimized laser pulses.
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in the forces-based optimization. This is due to the natural fre-
quency cut-off imposed by the parameterization.

The left plot of Fig. 5 displays the momenta of the nuclei during
the bond breaking test run. It is noteworthy that the momenta did
not significantly oscillate for t < 200 a.u., as observed for the forces.
The right plot, in turn, shows the coordinates of the nuclei during
the bond breaking test run. It is clear that the intended goal was
achieved: nucleus 3 dissociates from nucleus 1 and 2, that stay
bound.

Despite the successes, the nuclear movement was not com-
pletely negligible during the action of the laser pulse. This can al-
ready be seen in the right panel of Fig. 5. In order to further
study the influence of the nuclear movement, we performed runs
with different pulse durations (T = 100 a.u. and T = 400 a.u.). The
result is that for 100 a.u. many runs succeeded, while for 400 a.u.
no run did. We may conclude that (1) constructing the control tar-
get functional in terms of the momenta of the nuclei is an appro-
priate approach to the problem of selective bond cleavage, but
(2) the movement of the nuclei is, in general, not negligible when
performing the optimization, unless the laser pulses are very short.
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4.2. Gradient free optimization algorithm with moving nuclei

The natural next step is therefore to include the ionic motion
during the optimization runs, in order to allow for larger pulse
durations. We have attempted this using exactly the same model
and target definition as in the previous section. The only difference
is that, during the action of the pulse, the dynamic variables in-
clude not only the electronic orbital, but also the nuclear coordi-
nates and momenta.

The laser pulse was represented in the same way as in the pre-
vious section: the set of hyperspherical angles that describe the
fixed-norm (i.e. fixed fluence) coefficients of a sine series expan-
sion. We tested, for these runs, in addition to the previously used
downhill simplex scheme, a new gradient-free optimization algo-
rithm: the NEWUOA [49] scheme. It is based on the construction
of a higher order polynomial approximation to the function that
needs to be optimized.

We used a total pulse length of T = 400 a.u., larger than in the
previous case, in order to make the nuclear movement clearly
non-negligible. The sine series expansion contained in this case
14 components, making the parameter space of 13 degrees of free-
dom. Several initial guesses of the form (48) were tried, with
x0 = (3. . .9) � 10�2 a.u. Each initial pulse was then optimized with
the two maximization algorithms. We observed a much faster con-
vergence (roughly double) with the NEWUOA algorithm. All tests,
no matter what maximization algorithm was used, were success-
ful: the optimized pulse led to the breaking of the selected bond.
We describe the results obtained for the case x0 = 6 � 10�2 a.u.
(since all other cases showed a similar behavior).

The left plot of Fig. 6 compares both optimization algorithms.
Clearly, the NEWUOA algorithm finds the maximum much faster.
The right plot compares the optimized laser pulses. Here we see
that the two algorithms found different local maxima – even if
both achieved the attempted goal: the breaking of the selected
bond.

The left plot of Fig. 7 displays the momenta of the nuclei during
the bond breaking test run (performed with the laser pulse of iter-
ation step 40 of the NEWUOA optimization). The right plot dis-
plays, in turn, the coordinates. The selected bond is broken
quickly. We note that a certain degree of ionization occurred in
all runs (the final charges oscillated between 1.1 and 2.0 a.u.) In
all cases, most of the charge remained in the dimer fragment, per-
mitting its stability. We can conclude that the inclusion of the
movement of the nuclei in the optimization runs solves the prob-
lems found in the previous section, when the pulse durations are
not very short.

4.3. CG optimization for fixed nuclei

A target constructed in terms of the momenta can also be han-
dled with a gradient based algorithm, for which the QOCT equations
are needed. This subsection describes such calculation for the same
model used in the previous two subsections. Note, however, that
the QOCT equations presented above are valid for a quantum sys-
tem, not for a mixed quantum–classical one. Therefore, the nuclei
must be frozen during the optimization, and in consequence we
are restricted once again to short pulses (T = 200 a.u., a case for
which we saw that the frozen nuclei approximation is justified).

The laser pulse was represented by the Fourier series (24), and
further constraints (constant fluence, zero average field) were then
implemented as described in Section 2.3.1 – the parameter set is
then a set of hyperspherical angles h. We slightly changed the def-
inition of the target:

J1½W� ¼ ðp2½W� � p3½W�Þ � 10jp1½W� � p2½W�j; ð49Þ

in order to have linear dependence with respect to the momenta for
the two terms in the right hand side, since we observed that this
choice usually provides better convergence. The factor ‘‘10’’ can also
be changed, and regulates the weight that is placed on the minimi-
zation of the momenta difference between those atoms that must
remain bound.

Due to the time-dependent nature of the target, Eq. (11) is now
inhomogeneous, and the evolution of the auxiliary wave function v
is governed by the following equations:

i
@v½h�
@t
ðx; tÞ ¼ bH½h; t�v½h�ðx; tÞ � i

dJ1

dW�½h�ðx; tÞ : ð50Þ

v½h�ðx; TÞ ¼ 0: ð51Þ

The gradient rhG[h] can be calculated by Eq. (9) [55]. This gradient
can then be used to perform a conjugate gradients [50]
optimization.
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We performed a number of runs with this scheme, and the re-
sults did not differ qualitatively of the results obtained with the
gradient-free algorithm: partial ionization, and successful bond-
breaking in about half of the runs. The purpose of these calcula-
tions was to make a comparison regarding the computational effi-
ciency, and therefore we only show results corresponding to one
run that was performed with identical parameters with both opti-
mization schemes.

The left plot of Fig. 8 compares the convergence for the two
methods. The NEWUOA algorithm reached the maximum after
about 60 propagations, whereas the CG method just needed about
25 propagations. This was typical, in all runs, the NEWUOA method
needed about twice the computing time to reach convergence.
(note that in the CG case, each propagation corresponds to either
a backwards or a forwards propagation, which require roughly
the same computer time).

The right plot of Fig. 8 shows the optimized laser pulses for both
methods. One can see that the two pulses look rather similar. Nev-
ertheless, there are some small differences in the optimized pulses
which became noticeable in the ionization of the system: while the
electronic charge decreased to about 1.65 a.u. when irradiating the
system with the pulse obtained with the CG optimization run, we
got a decrease of the electronic charge to about 1.3 a.u. when the
NEWUOA pulse was used.

We can conclude that a gradient-based technique such as CG is
also applicable to this problem, and is even more efficient, despite
the complications due to the necessity of backwards propagating
an inhomogeneous Schrödinger-like equation. Unfortunately, the
scheme cannot yet be applied to longer pulses in which the nuclei
should be allowed to move. In those cases, the nuclear equations of
motion must then be included, as well as the electronic quantum
equation, in the OCT formalism. Work along these lines is in
progress.
Fig. 9. Sketch of the 5-atomic 1D test model.
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5. Selective bond breaking of 1D chains

A more stringent test on the methodology consists of attempt-
ing to obtain different sized fragments in longer 1D atomic chains.
We now show calculations of five equal mass atom chains, for
which we attempt to break the chain into either 4 + 1 or 3 + 2 frag-
ments (see Fig. 9). The chain consists of 5 Hydrogen nuclei; as in
previous section, they interact with the electrons through a soft
Coulomb potential. We place four non-interacting electrons; this
means that instead of one single wave function W, we now have
two doubly occupied orbitals w1, w2. The construction of the con-
trol target was based on the same ideas discussed earlier: maxi-
mizing or minimizing momenta differences. For example, for the
4 + 1 cleavage attempt:

J1½w1;w2� ¼ ðp4½w1;w2� � p5½w1;w2�Þ � 10
X3

i¼1

jpi½w1;w2� � piþ1½w1;w2�j;

ð52Þ
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ig. 14. Sketch of Hþ3 . The dashed line indicates the separation plane, where the
olecule ought to be broken. The normal vector~n lies in the molecular plane and is

erpendicular to the separation plane. The laser polarization is parallel to~n, and the
irection of the optimized momenta ~pi is parallel to ~n as well.
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whereas for the 3 + 2 case:

J1½w1;w2� ¼ ðp3½w1;w2� � p4½w1;w2�Þ � 10
X4

i¼1;i–3

jpi½w1;w2�

� piþ1½w1;w2�j: ð53Þ

In this case, we considered moving nuclei and we applied a gradient
free optimization by making use of the NEWUOA algorithm. Again,
we used (48) as initial pulse with a pulse duration of T = 400 a.u.
The pulse was represented by the constrained sine series and in
this case we restricted the parameter search space to 11
hyperspherical angles. The following initial parameters have been
tested: x0 = (3, . . . ,6) � 10�2 a.u.

For the 4 + 1 bond breaking attempt, almost all runs were suc-
cessful (for two of them the field was too weak to remove any nu-
cleus). There was no ionization, and all the electronic charge
remained by the 4 nuclei, while one proton separated away. The
plots in Figs. 10 and 11 correspond to the run with x0 = 6 � 10�2 a.u.
The other successful runs were qualitatively similar.

For the 3 + 2 bond breaking attempt, the results were different.
The optimization converged for all runs. However, only 2 of 10
bond breaking test runs were successful. In the other cases, we
either obtained no ionization and unwanted 4 + 1 separation like
in the previous case, or else substantial ionization and Coulomb
explosion of the full system.

The plots shown in Fig. 12 correspond to one successful run,
namely that with x0 = 6 � 10�2 a.u. Fig. 13 shows the corresponding
electronic density distribution and the coordinates of the nuclei at
different times. At t = 300 a.u., an ionization of the system is ob-
served. In fact, we found that a certain ionization was needed to re-
move the two nuclei. In this particular case, the electronic charge
decreased from 4.0 a.u. to 2.3 a.u. during the laser pulse. This ion-
ization necessarily implied an unwanted effect, namely that nu-
cleus 4 and 5 were not bound to each other anymore after
removing them (see plot for t = 600 a.u.).

Therefore, for this particular choice of model, search space and
algorithm, the optimization runs did not succeed. However, we ex-
pect that this can be cured in a number of ways, since there is a
large freedom to be explored regarding the definition of the target
functional. For example, the introduction of the ionization in the
definition (prevention or encouragement of ionization) could help
to avoid undesired effects caused by it. As a final remark, we men-
tion that we performed further tests with atomic chains with dif-
ferent masses [55]; in those cases, it was found that the
momenta should be substituted by the velocities in order to obtain
better results.
6. Hþ3

The next example is a more realistic molecular description: a 3D
calculation for the Hþ3 molecule, considering interacting electrons.
Fig. 14 shows the geometry of this molecule [56]; it has an equilat-
eral shape with an edge length of 1.64 a.u.

The two electrons were treated with TDDFT and the exchange–
correlation potential was approximated by the ALDA. The motion
of the nuclei was treated classically. The electron-nucleus interac-
tion was described by pseudo-potentials – in this case, obviously,
the pseudo-potentials are not used to remove any core electrons,
but as a means to smooth the Coulomb singularity.

We tried to obtain a laser pulse which removes one particular
nucleus, leaving a bound Hydrogen molecule, by making use of
the same kind of momentum target described above. Fig. 14 shows
the directions in which the momenta were optimized; the control
target is defined as:

J1½W� ¼~n � ð~p1½W� �~p2½W�Þ � j~p2½W� �~p3½W�j; ð54Þ

where W is the Kohn–Sham orbital occupied by the two electrons.
Note that this functional is an explicit functional of the density.

We used the gradient free NEWUOA algorithm for the optimiza-
tion, and we did not neglect the nuclear movement. The initial
pulse was chosen to be in the form given by Eq. (48), and the pulse
duration was T = 400 a.u. In this 3D case, we also have to specify
the laser polarization, which was chosen parallel to ~n. The param-
F
m
p
d



Fig. 16. Isosurface plot of the electronic density and the corresponding positions of
the nuclei during the bond breaking test run at different times. The isosurface was
plotted at a density of 0.07 a.u. The laser pulse duration was T = 400 a.u.
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eterization used to represent this laser pulses was the constrained
sine series.

We display in Figs. 15 and 16 the results of one typical optimi-
zation run, corresponding to an initial guess with x0 = 3 � 10�2 a.u.
It can be seen how the convergence is rather fast, and the obtained
pulse cuts the molecule in the desired way. The electronic charge
decreased from 2.0 a.u. to around 1.5 a.u.
Fig. 19. Isosurface plot of the electronic density and the corresponding positions of
the nuclei. The isosurface value of the density was 0.045 a.u. The laser pulse
duration was T = 400 a.u.
7. CH2NHþ2

A more complex molecule is CH2NHþ2 , the ‘‘methaniminium cat-
ion’’. The loss of H+ as well as H2 from CH2NHþ2 has been exten-
sively investigated, both experimentally and theoretically [57,58].
Our goal was the former, the removal of one of the protons, the
one that binds to the Nitrogen nucleus (this process leads to
CH2NH, ‘‘methylenimine’’, see Fig. 17).

We started our calculations from the ground state in which
CH2NHþ2 has a planar shape (see Fig. 17). Then, the simulation of
the molecule dynamics of CH2NHþ2 was performed similarly to that
of Hþ3 , with the described mixed quantum classical description on
Fig. 17. Sketch of CH2NHþ2 . The dashed line indicates the separation plane, where
the molecule ought to be broken. The normal vector ~n lies in the molecular plane
and is perpendicular to the separation plane. The laser polarization as well as the
directions in which the velocities ~v i were optimized are parallel to ~n.
top of TDDFT. The exchange–correlation potential was approxi-
mated by the ALDA. The potentials of the nuclei were described
by pseudo-potentials (in this case, this means that the two core
electrons of C and N are frozen).

Since we are now working with a molecule that contains nuclei
with different masses, we will define our target in terms of the
velocities, instead of using the momenta (the nuclear labels are de-
fined in Fig. 17):

J1½n� ¼~n � ð~v1½n� �~v2½n�Þ � 10
X6

i¼3

j~v2½n� �~v i½n�j: ð55Þ

Again, this target functional is an explicit functional of the elec-
tronic density; this is important conceptually since we are using
TDDFT, where the many-body wave function is not easily accessi-
ble. In the previous equation, we have show explicitly this func-
tional dependence on the density. The normal vector ~n as well as
the laser polarization direction were chosen to be parallel to the
bond axis between the Nitrogen nucleus and the Hydrogen nucleus.

Again, we used the NEWUOA algorithm and the form given in
Eq. (48) for the initial pulse; the pulse duration was T = 400 a.u.
The electric field was expanded in a sine series, and the con-
strained sine series parameterization was used once again (this
time, with 10 degrees of freedom). As usual, we performed optimi-
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zations with a number of initial guesses, varying frequencies and
amplitudes (but keeping the fluence constant). Only one of the at-
tempts was successful, namely that with the initial frequency
x0 = 3 � 10�2 a.u. The plots in Figs. 18 and 19 correspond to this
successful run. The electronic charge decreased from 12.0 a.u. to
11.0 a.u. in this run. In the other cases, the amplitudes of the opti-
mized electric fields were either too small or too large: too small
electric fields merely led to oscillations of the nuclei around their
equilibrium positions, whereas too large fields, on the other hand,
caused high ionization, which led to unintended dissociations.
8. Conclusions

This work addresses the challenge of selective photochemistry
by means of high intensity shaped ultra-short laser pulses. The ra-
pid experimental advances in forming laser pulses of almost arbi-
trary shape call for reliable theoretical tools to predict optimal
pulse shapes for certain predefined tasks. To achieve this goal,
our basic strategy is to combine the mathematical framework of
optimal control theory with a mixed quantum–classical descrip-
tion of the molecular degrees of freedom: The electronic response
of the system is described from first principles using TDDFT while
the nuclear degrees of freedom are governed by classical equations
of motion with Ehrenfest forces that mediate the coupling to the
electronic degrees of freedom.

The task that the laser pulse is supposed to perform has to be
formulated in terms of a ‘‘control target’’ or ‘‘target functional’’ to
be maximized by the optimal pulse. Usually a given task, like
breaking a selected bond, can be formulated in terms of several
possible target functionals. This is where mathematical intuition
and physical creativity come into play. The mixed quantum–classi-
cal description employed in this work lends itself to formulating
the target functional for bond breaking in terms of the classical nu-
clear degrees of freedom. We have explored target functionals
based on the classical forces acting on the nuclei, either consider-
ing their value at the end of the laser pulse, or considering their
integrated value over the full propagation. This latter case means
that the target functional depends on the nuclear momenta at
the end of the pulse. The results show a clear superiority of the
momentum-based target functional. This makes perfect sense be-
cause the oscillatory character of the forces makes their value at
a single point in time less relevant than the integrated values.
For molecules with different nuclei, it turns out to be better to de-
fine the targets in terms of the nuclear velocities rather than the
momenta.

After defining the microscopic description of the system and
choosing the control target functional, there is still ample freedom
in the choice of optimization algorithms. We have utilized two fun-
damentally different types: gradient-free and gradient based algo-
rithms. The latter were found, not surprisingly, to perform better.
They require, however, a more elaborate theory, since the gradient
(or functional derivative) calculation involves the backwards prop-
agation of an auxiliary wave function which is particularly compli-
cated when the basic equation of motion is non-linear (like in
TDDFT) [33].

The calculations presented for H3+ and for CH2NHþ2 clearly dem-
onstrate that selective bond breaking can be achieved with the tar-
get functionals and optimization algorithms developed in this
work. An immediate task for the future will be the application to
larger molecules. Furthermore, one may consider the definition
of refined target functionals in order to prevent that the removed
fragments break apart later. For example, a term that enhances
the electronic charge localization between the nuclei of the re-
moved fragments could be included in the target functional. Work
along these lines is in progress.
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