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To address the impact of electron correlations in the linear and non-linear response regimes of interacting
many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D)
systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron
problem onto an N-dimensional single electron problem. We analyze the performance of the recently
derived 1D local density approximation as well as the exact-exchange orbital functional for those
systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which
are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static
correlations play a role, we consider the time-evolution of the natural occupation numbers associated to
the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence
of the exchange and correlation functionals in time-dependent density and density-matrix functional
theories.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Since its invention in 1984 time-dependent density-functional
theory (TDDFT) has become one of the major tools for describing
time-dependent phenomena of electronic systems [1,2]. Despite its
success, several important questions remain open. A prominent
example are double excitations [3], which cannot be described with
adiabatic approximations to the exchange-correlation (xc) kernel
[4]. Other examples include the description of memory [5], charge-
transfer excitations [6], Rabi oscillations [7], and population control
[8,9]. Also, the construction of functionals for certain observables can
be problematic, like e.g. double-ionization in strong laser fields
where one strategy rests on expressing the pair-correlation function
as a functional of the time-dependent density [10].

In many cases, there is little knowledge about how the dynamics
of the many-body system interacting with an arbitrary external
time-dependent field is mapped onto the non-interacting (time-
dependent) Kohn–Sham system. Here, one-dimensional systems
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can provide insight since these systems can be exactly diagonalized
and subsequently propagated in time for a small number of
electrons. We provide insight into the limitations of adiabatic func-
tionals, especially for describing non-linear electron dynamics
exemplified by the case of Rabi oscillations.

This article is organized as follows, we first highlight the exact
mapping of a many-electron system onto an N-dimensional one-
electron problem and the selection of proper fermionic solutions.
Then, we discuss the recently developed one-dimensional local
density approximation (LDA) and its performance for calculating
linear and non-linear response. We use the LDA as well as exact
exchange (EXX) to investigate the description of double excitations
and Rabi oscillations with adiabatic approximations. We then
change from TDDFT to reduced density-matrix functional theory,
where we discuss under which conditions adiabatic approxima-
tions provide a valid description. We conclude the paper with a
short summary and perspectives.
2. One-dimensional model systems

The Hamiltonian for N electrons moving in a general, possibly
time dependent, external potential vext in one spatial dimension
reads
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H ¼
XN

j¼1

� d2

2dx2
j

þ vextðxj; tÞ
" #

þ 1
2

XN

j;k¼1
j–k

v intðxj; xkÞ; ð1Þ

where vint describes the electron–electron interaction (atomic units
e = m = ⁄ = 1 are used throughout this paper). In one spatial dimen-
sion the singularity of the ordinary Coulomb interaction prevents
electrons from passing the position of the singularity, both in the
attractive and repulsive case. In order to avoid this unphysical
behavior of the full Coulomb interaction we employ the so called
soft-Coulomb interaction

vsoft�Cðx1; x2Þ ¼
q1q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðx1 � x2Þ2
q ð2Þ

instead [11]. Here, q1 and q2 describe the charges of the particles
while a is the usual softening parameter. We use a = 1 for all our
calculations. Mathematically, it is straightforward to show that
the Hamiltonian (1) is equivalent to a Hamiltonian for a single
particle in N dimensions moving in an external potential

vNdimðx1 . . . xNÞ ¼
XN

j¼1

vextðxjÞ þ
1
2

XN

j;k¼1
j–k

v intðxj; xkÞ ð3Þ

consisting of all the contributions from vext and vint. The corre-
sponding Schrödinger equation can, hence, be solved by any code
which is able to treat non-interacting particles in the correct
number of dimensions in an arbitrary external potential.

Due to the Hamiltonian being symmetric under particle inter-
change, xj M xk, the solutions of the Schrödinger equation can be
classified according to irreducible representations of the permuta-
tion group. For the simplest case of two interacting electrons both
the symmetric and antisymmetric solutions are valid correspond-
ing to the singlet and triplet spin configurations, respectively. For
more than two electrons one needs to separately ensure that the
spatial wave function is a solution to the N-electron problem. For
example, a totally symmetric spatial wave function is a correct
solution for a single particle in N dimensions, however, for N > 2
there is no corresponding spin function such that the total wave
function has the required antisymmetry to be a solution of the N
particle problem in 1D. We solve this problem by symmetrizing
the solutions according to all possible fermionic Young diagrams
for the given particle number N [12]. Fig. 1 shows all possible
standard Young diagrams for the spatial part of the wave function
for two and three electrons. As the spin of the electron is 1/2, the
Young diagrams for the spin part can maximally have two rows,
one for each spin direction. The Young diagrams for the spatial part
of the wave function are then given as the transpose of the respec-
tive spin diagram and, hence, have at most two columns. For two
electrons there exist two diagrams corresponding to the singlet
(Fig. 1a) and triplet (Fig. 1b) configurations. For three electrons,
there exist two diagrams with two electrons in one spin channel
1 2 1

2 3

1 2 1 3

2

1

3

2

(a) (b) (c) (d) (e)

Fig. 1. Possible standard Young diagrams for the spatial part of the wave function
for two [figures (a) and (b)] and three [figures (c) to (e)] electrons. There are
maximally two columns in each diagram, one for each spin direction. Figures (a)
and (b) correspond to the two electron singlet and triplet, respectively. For diagram
(c) the wave function is symmetrized for particles 1 and 2 and antisymmetrized for
1 and 3, while for diagram (d) the symmetrization is with respect to particles 1 and
3 and the antisymmetrization with respect to 1 and 2. For diagram (e) the wave
function is antisymmetrized with respect to the interchange of any two particles.
and the remaining electron in the other channel (Fig. 1 c and d)
and one diagram with all electrons having the same spin (Fig. 1 e).

In practice, we solve the Schrödinger equation in N dimensions
and then symmetrize each solution according to the Young
diagrams for the given particle number. If none of the Young
diagrams yields a non-vanishing solution after symmetrization
the state does not describe a solution for spin-1/2 particles and is
discarded. If a state yields a non-vanishing contribution for a given
diagram the appropriately symmetrized state is normalized and
used in further calculations.

The solution of higher dimensional problems within these sym-
metry restrictions has been implemented in the octopus computer
program [13,14]. The lowest energy solution is found to be purely
symmetric and is, therefore, for N > 2, discarded. With increasing
number of electrons we also observe an increasing number of states
which do not satisfy the fermionic symmetry requirements.

3. Local density approximation

The local density approximation for electrons interacting in one
spatial dimension is derived from quantum Monte-Carlo calcula-
tions for a 1D homogeneous electron gas where the electrons inter-
act via the soft-Coulomb interaction in Eq. (2)[15]. The correlation
energy is parametrized in terms of rs and the spin polarization f =
(N" � N;)/N in the form

�cðrs; fÞ ¼ �cðrs; f ¼ 0Þ þ f2½�cðrs; f ¼ 1Þ � �cðrs; f ¼ 0Þ� ð4Þ

with

�cðrs; f ¼ 0;1Þ ¼ �1
2

rs þ Er2
s

Aþ Brs þ Cr2
s þ Dr3

s

� ln 1þ ars þ brm
s

� �
ð5Þ

which proves to be very accurate in the parameterization for 1D
systems for different long-range interactions [16,17,15]. Note, that
the above energy is given in Hartree units. To obtain a priori the
exact high-density result known from the random-phase approxi-
mation, i.e.

�cðrs ! 0; f ¼ 0Þ ¼ � 4
p4a2 r2

s ; ð6Þ

�cðrs ! 0; f ¼ 1Þ ¼ � 1
2p4a2 r2

s ; ð7Þ

to leading order in rs, we fix the ratio a/A to be equal to 8/(p4a2) and
1/(p4a2) for f = 0 and f = 1, respectively. In both cases m is limited to
values larger than 1. As a result, the number of independent
parameters in Eq. (5) is reduced to 7. In addition, for a = 1 the
denominator can be simplified by setting B = 0. However, for
smaller values of the softening parameter the linear term in the
denominator is important for achieving agreement with the
quantum Monte-Carlo results. The optimal values of the parameters
are given in Table 1. For more details on the 1D QMC methodology
and the parameterization procedure we refer to Refs. [16,17].

We have implemented the 1D LDA for a = 1 in both unpolarized
and polarized versions in the octopus program [13,14].

Fig. 2 shows the linear and non-linear absorption spectra of a
1D Be2+system, i.e. with an external potential of

vBe
extðxÞ ¼

�4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2
p ð8Þ

containing two electrons. We use the LDA as an adiabatic approxi-
mation to the exact time-dependent exchange-correlation poten-
tial. The spectrum is calculated in linear response to a spatially
constant perturbation at t = 0, i.e. we apply an additional external
electric field E in dipole approximation

vkick
ext ðx; tÞ ¼ xE0dðtÞ ð9Þ
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Fig. 2. Linear (top) and non-linear (bottom) spectra of Be2+, calculated from the
Fourier transformation of the dipole moment using a polynomial damping function,
comparing the exact and the 1D LDA calculation. The inset in the bottom figure
shows a zoom into the region from 2.7 to 3.0 Ha.

Table 2
Excitation energies from linear and non-linear response of the 1D Be2+atom
corresponding to the spectra in Fig. 2. Excitations from linear response are denoted
as x while those from the non-linear spectrum are denoted with X. All numbers are
given in Hartree.

x1 x2 x3 x4 x5 x6 x7 X1 X2 X3

LDA 1.10 1.74 1.90 1.96 2.00 – – 0.22 0.40 –
EXX 1.13 1.82 2.08 2.20 2.27 2.30 2.32 0.26 0.43 0.52
Exact 1.12 1.81 2.08 2.19 2.26 2.29 2.32 0.28 0.42 0.54

Table 1
Parameterization of the correlation energy of the 1D homogeneous electron gas for a
softening parameter of a = 1, spin unpolarized (f = 0) and fully polarized (f = 1) cases
are given. The error in the last digits is given in parenthesis, while the average error,
D, (in Hartree) in the full density range is given in the last row.

f = 0 f = 1

A 18.40 (29) 5.24 (79)
B 0.0 0.0
C 7.501 (39) 1.568 (230)
D 0.10185 (5) 0.1286 (150)
E 0.012827 (10) 0.00320 (74)
a 1.511 (24) 0.0538 (82)
b 0.258 (6) 1.56 (1.31) � 10�5

m 4.424 (25) 2.958 (99)
D 6.7 � 10�5 3.3 � 10�5
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which gives an initial momentum to the electrons. The time propa-
gations were performed in a box ranging from �150 to 150 bohr
with absorbing boundary conditions [13] and a grid spacing of 0.2
bohr for a total propagation time of 103 a.u. In the linear regime a
kick of E0 ¼ 10�4 Ha/bohr was employed which was then increased
to 0.01 Ha/bohr to obtain the non-linear response. The values of the
excitation energies can be found in Table 2. In linear response, we
see five peaks in the LDA spectrum which compare well with the
first five excitations in the exact case. As expected, the agreement
is better for lower lying excitations and gets worse the closer we
get to the continuum. As a guide for the eye we included the KS
HOMO energy of the LDA calculation, �HOMO = 2.06 Ha and the exact
ionization potential of 2.41 Ha. The onset of the continuum itself
appears at too low energies in the LDA calculation missing two
more clearly visible peaks in the exact spectrum. In other words,
the LDA fails to reproduce the proper Rydberg series, a behavior
well known from 3D calculations. For comparison we also included
the results from an EXX calculation (which for two electrons is
adiabatic and equal to Hartree–Fock) which shows a slightly better
agreement than LDA for the first three excitations but, more impor-
tantly, reproduces the Rydberg series due to the correct asymptotic
behavior of the corresponding exchange potential. The quality of
the EXX results also implies that correlation is of secondary impor-
tance in the system for a = 1. The non-linear spectrum shows the
same excitations as the linear spectrum and three additional peaks
for the exact and the EXX calculation and two additional peaks in
the LDA spectrum. Their energies are also listed in Table 2. Due to
the spatial symmetry of the system all even order responses are
zero and the first non-vanishing higher-order response is of third
order. The frequency X1 = 0.28 Ha corresponds to an excitation
from the second to the third excited state, where the transition from
the ground to the second excited state is dipole forbidden and,
hence, can only be reached in a two-photon process. The other
two frequencies, X2 = 0.42 Ha and X3 = 0.54 Ha, correspond to the
transitions from first to second and second to fifth excited state,
respectively. Again, both the EXX and the LDA calculations yield a
good description of the low lying excitations, only the third peak
cannot be resolved in the LDA spectrum.

One feature of the exact spectrum that is missing from both the
LDA and the EXX spectra is the small dip at 2.8 Ha, see inset in
Fig. 2. It results from a Fano resonance [18,19], i.e. the decay of
an excited state into continuum states. It is missing from both
approximate spectra due to the double-excitation character of
the involved excited state. Double excitations in the linear regime
can only be described in TDDFT if a frequency-dependent xc kernel
is employed [4]. Any adiabatic approximation, however, leads to a
frequency independent kernel. Hence, double excitations, as well
as any resulting features, are missing from both the ALDA and
the AEXX linear response spectra. Apart from the well-known
shortcomings of not including double-excitations and not giving
the correct Rydberg series, the 1D ALDA reproduces both the linear
and the non-linear exact spectra quite well.

Fig. 3 shows the discrete part of the linear and non-linear spec-
tra for the Be+ system, i.e. the external potential is given by Eq. (8)
and the system contains three electrons. The ionization potential
for the exact calculation is 0.83 Ha which is again underestimated
by the LDA HOMO energy of 0.62 Ha. For this system the projection
onto the Young diagrams becomes important with the lowest en-
ergy spatial solution being symmetric under exchange of any two
variables. Therefore, it is not a valid solution for three fermions
and, hence, discarded. The second lowest energy is doubly degen-
erate with the eigenstates corresponding to diagrams Fig. 1c and d.
One of these states is then propagated with a kick strength of
E0 ¼ 10�4 for the linear spectra and E0 ¼ 0:1 for the non-linear
spectra. The exact linear spectrum shows two transitions at
0.36 Ha and 0.62 Ha. Again, we observe that LDA underestimates
these excitation energies giving 0.34 Ha and 0.55 Ha, respectively.
The non-linear spectrum contains two more peaks in the exact
spectrum at 0.09 Ha and 0.16 Ha which are, however, difficult to
resolve. In the LDA spectrum only the peak at 0.16 Ha can be
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Fig. 3. Discrete part of the linear (top) and non-linear (bottom) spectra of Be+,
calculated from the Fourier transformation of the dipole moment using an
exponential damping function, comparing the exact and the 1D LDA calculation.
The exact ionization potential is at 0.83 Ha and the LDA HOMO at 0.63 Ha.
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Fig. 4. External cosh-potential and single particle eigenvalues. In the non-
interacting two-particle ground state both electrons occupy the lowest energy
level in a singlet configuration.

Table 3
Energies (in Hartree) for two-particle states in the symmetric well potential (10) and
the asymmetric well Eq. (12) without interaction and with soft-Coulomb interaction,
Eq. (2). The 5th excited state corresponds to a double excitation.

State j Symmetric well Asymmetric well Spin

Non-interact. Interacting Non-interact. Interacting

0 �16.00 �15.10 �16.92 �16.02 Singlet
1 �12.50 �11.75 �13.21 �12.45 Singlet
2 �12.50 �11.62 �13.21 �12.32 Triplet
3 �10.00 �9.31 �10.52 �9.83 Singlet
4 �10.00 �9.30 �10.52 �9.81 Triplet
5 �9.00 �8.22 �9.48 �8.70 Singlet
6 �8.50 �7.98 �8.90 �8.38 Singlet
7 �8.50 �7.97 �8.90 �8.38 Triplet
8 �8.00 �7.90 �8.45 �8.36 Singlet
9 �8.00 �7.90 �8.45 �8.36 Triplet
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resolved. From the exact calculation of excited states we know that
there should be several more transitions at very small frequencies
which are accessible in non-linear response. Those are, however,
very close to each other and, hence, more difficult to resolve.
Attempts to improve the spectra in the small frequency region
are currently in progress.

4. Double excitations

In order to investigate double excitations in the linear-response
spectrum we employ the following external potential

vcosh
ext ðxÞ ¼ �

v0

cosh2ðkxÞ
; ð10Þ

for which the one-particle problem can be solved analytically [12]
and the resulting eigenvalues are given as

�j ¼ �
k2

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v0

k2

s
� 1� 2j

 !2

ð11Þ

for j = 0,1 . . .. Here, the term in parenthesis needs to be positive
which restricts the number of bound states of the system. In other
words, by choosing the two parameters v0 and k appropriately, one
can create systems with any number of bound states. For our calcu-
lations we choose k = 1 and v0 = 10 which leads to the four bound
single-electron states shown in Fig. 4.

Putting two electrons into our system we calculate the total
energies for non-interacting electrons as well as for electrons
interacting via the soft-Coulomb interaction (2). The results for
the first ten states are given in Table 3. As the energy differences
between the interacting and non-interacting cases are small we
can treat the many-body states as perturbed independent-particle
states. This treatment is convenient because in the independent-
particle picture double excitations are well defined: they describe
transitions in which two electrons get excited with the excitation
energies given as the sum of two single-particle excitations. The
excitation energies for the different transitions are shown in Table
4. We note that the two-particle eigenstates of the symmetric well
(10) can be chosen as eigenstates of the parity operator and, hence,
can be classified as even and odd. For odd operators like the dipole
operator the transitions from the ground state (even) to even two-
particle excited states have zero oscillator strength. Nevertheless,
these transitions can be visible beyond linear response. In addition,
starting from the non-interacting ground state, doubly excited
states have zero weight in the density response function because
the density operator is a single particle operator. Thus, also the
odd doubly excited two-particle states have zero oscillator
strength for non-interacting particles. The 5th excited state of the
non-interacting electrons can clearly be identified as a double
excitation. This transition corresponds to both electrons getting
promoted to the first excited state e1. As the energy differences
between the interacting and non-interacting cases are small the
5th excited state of the interacting system is of double-excitation
character as well. Unfortunately, however, this two-particle
excited state is even under parity and, hence, the transition is
dipole forbidden. The first double excitation which is dipole
allowed is X12 which, in the independent-particle picture, corre-
sponds to one electron getting promoted to the first excited state
e1 and the other to the second excited state e2. It has an excitation
energy of 9.50 Ha in the non-interacting system. The first
ionization potential of the system, however, is 8.00 Ha which
implies that the dipole allowed double excitation lies in the



Table 4
Excitation energies (in Hartree) for two particles in the symmetric well potential (10)
and the asymmetric well Eq. (12) without interaction and with soft-Coulomb
interaction, Eq. (2). X11 and X12 are double excitations. We also state the symmetry of
the two-particle excited state for the symmetric well.

Excitation Symmetric well Asymmetric well

Symmetry Non-
interact.

Interact. Non-
interact.

Interact.

X01 Odd �3.50 �3.48 �3.71 �3.70
X02 Even �6.00 �5.80 �6.40 �6.21
X11 Even �7.00 �6.88 �7.44 �7.32
X03 Odd �7.50 �7.13 �8.02 �7.64
X12 Odd �9.50 ��9.28 �10.11 ��9.91
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Fig. 5. Linear response spectrum for two electrons in a cosh potential, Eq. (10),
calculated from the Fourier transformation of the dipole moment using a polyno-
mial damping function. For interacting electrons we observe an additional
transition at �9.4 Ha that corresponds to X12 (see inset).
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Fig. 6. Linear response spectrum for two electrons in the modified cosh potential,
Eq. (12), calculated from the Fourier transformation of the dipole moment using a
polynomial damping function. Notice that for interacting electrons the double
excitation X11 appears at �7.3 Ha and X12 shifts to �10.0 Ha.
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Eq. (12), calculated from the Fourier transformation of the dipole moment using a
polynomial damping function. For the DFT (EXX and LDA) spectra both double
excitations X11 and X12 are missing.
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continuum part of the spectrum. In addition, X12 has zero weight
in linear response for the non-interacting system because the tran-
sition matrix element vanishes as the final state differs from the
initial state in two orbital occupations. For the interacting system,
however, the two-particle spatial singlet wave function is no long-
er given as a product of the lowest energy single-particle orbital. A
configuration interaction (CI) expansion of this wave function also
contains terms which correspond to single excitations of the non-
interacting particles. As a result, the double excitation X12

becomes accessible in linear response. This can be seen in Fig. 5,
where we plot the absorption spectrum of the two-electron system
both for interacting and non-interacting electrons. The spectrum
was calculated in linear response to a spatially constant perturba-
tion at t = 0, see Eq. (9). We observe that the interacting spectrum
shows a small dip at �9.4 Ha which is close to the energy differ-
ence between the ground state and the dipole-allowed double
excitation described earlier (as this excitation lies within the
continuum its energy cannot be computed directly but an estimate
can be found from X01 + X02). We can clearly see that the transi-
tion lies within the continuum, or due to the calculation being
done in a finite box, within the excitations to box states. Due to
the nearby excitations to the continuum the frequency X12 of the
bound transition is shifted slightly [18]. This excitations appears
as a dip rather than a peak in the spectrum due to the absorbing
boundary conditions which were employed in the calculation [19].

In order to investigate the double excitations which are dipole
forbidden by symmetry, we break the spatial symmetry of the
system by modifying the external potential to

vmod
ext ðxÞ ¼ �

v0ð1þ 0:5xÞ
cosh2ðkxÞ

: ð12Þ
As the Hamiltonian for this case no longer commutes with the par-
ity operator, the eigenstates do not have a specific symmetry any
longer. Therefore, the previously dipole forbidden transitions now
have a finite oscillator strength. Also, the modification is small
enough to leave the ordering of the states intact, i.e. the fifth excited
state still has double-excitation character and the energies are
approximately those of the symmetric system (see Table 3 for
details). As we can see in Fig. 6 this leads to an additional peak
slightly above 7.3 Ha which corresponds to the transition X11 from
the ground state to the fifth excited state. In Fig. 7 we also include
DFT linear response spectra for the symmetry-broken potential Eq.
(12) using EXX and the 1D LDA functional of Section 3 which are
used as adiabatic approximations to the time-dependent xc poten-
tial. It is, therefore, not surprising that the double excitation X11 is
missing from the resulting spectra [4,20]. However, as we can see in
Fig. 8, beyond linear response the double excitation X11 becomes
visible even for the EXX functional, which is adiabatic, in the
symmetry-broken potential.

5. Rabi oscillations

Rabi oscillations can occur when a system is exposed to an
external laser field with frequency x, which is in resonance to a
transition in the system. The system oscillates between two states
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with frequency X0 provided it can approximately be described as a
two-level system. This is the case if the frequency x is resonant to
one specific transition in the system and the frequency of the oscil-
lation between the states is much smaller than the frequency of the
applied laser field. As will be discussed later, a small detuning of
the applied laser from the exact resonant frequency still leads to
Rabi oscillations, however, with increased frequency and smaller
amplitude.

We analyze Rabi oscillations for a 1D two-electron model (see
section 2) but note that the analysis can easily be extended to three
dimensions and, using the single-pole approximation also to any
number of electrons [21]. For ease of comparison we choose the
same model as in [7] with the external potential

vRabi
ext ðx; tÞ ¼ �

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1
p þ xE0 sinðxtÞ: ð13Þ

Eq. (13) describes a 1D Helium atom interacting with a monochro-
matic laser field of frequency x. We denote the eigenstates and
eigenvalues of the Hamiltonian (1) with the external potential
(13) as wk and �k, respectively. In order for Rabi’s solution to be va-
lid, the system under study needs to be an effective two-level sys-
tem reducing the solution space to w0 (ground state) and w1

(dipole allowed excited state) with eigenenergies �0 and �1. The sys-
tem then has a resonance at D = �1 � �0. The two-level approxima-
tion is valid if the two conditions

d
D
� 1; X0 � x ð14Þ

are satisfied, where d = x � D describes the detuning from the res-
onance and X0 ¼ d10E0 is the Rabi frequency for a resonant laser,

with d10 ¼ w0j
P

jx̂jjw1

D E
the dipole matrix element. In order to sat-

isfy the second condition we choose E0 ¼ 0:0125x in Eq. (13). For
the eigenvalues we obtain �0 = �2.238 Ha and �1 = �1.705 Ha which
implies a resonant frequency of D = �1 � �0 = 0.534 Ha. The static di-
pole matrix element is d10 = 1.104. The frequency x of the applied
field has been chosen to be close to the resonance, i.e. the detuning
d = x � D is small.

For an effective two-level system the time-dependent two-
electron wave function w(x1,x2, t) can be written as a linear combi-
nation of ground and excited state, i.e.

wðx1; x2; tÞ ¼ a0ðtÞw0ðx1; x2Þ þ a1ðtÞw1ðx1; x2Þ ð15Þ

with ja0(t)j2 = n0(t) and ja1(t)j2 = n1(t) being the time-dependent le-
vel populations of the ground and excited states. Normalization of
the wave functions then implies n0(t) + n1(t) = 1. As the amplitude
E0 and the frequency x of the applied field EðtÞ are chosen such that
the conditions (14) are fulfilled the Hamiltonian (1) can be pro-
jected onto a 2 � 2 space. The time-dependent Schrödinger equa-
tion i@tjwðtÞi ¼ bHjwðtÞi then reduces to a 2 � 2 matrix equation of
the form

i@t
a0ðtÞ
a1ðtÞ

� �
¼

�0 d10EðtÞ
d10EðtÞ �1

� �
a0ðtÞ
a1ðtÞ

� �
ð16Þ

from which one can derive coupled differential equations for the
level population n1(t) and the dipole moment dðtÞ ¼
hwðtÞjx̂1 þ x̂2jwðtÞi ¼ 2d10Re a	0ðtÞa1ðtÞ

� �
. For the dipole moment we

obtain

dðtÞ ¼ 2d10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðtÞn1ðtÞ

p
cosðxt þ hðtÞÞ; ð17Þ

where the Rabi frequency is included in the time dependence of the
amplitude of the dipole moment through the time dependence of
n0(t) and n1(t), and h(t) is the phase difference of a0(t) and a1(t). Ful-
fillment of conditions (14) allows for the use of the rotating wave
approximation (RWA) [22] which yields the following differential
equation for n1(t)

@2
t n1ðtÞ ¼ � d2 þX2

0

� �
n1ðtÞ þ

1
2

X2
0 ð18Þ

with initial conditions n1(0) = 0 and _n1ð0Þ ¼ 0. Eq. (18) describes a
harmonic oscillator with a restoring force which increases with
increasing detuning d. As a result, the frequency of the Rabi oscilla-
tions increases with increased detuning, while the maximum popu-
lation of the excited state decreases as nmax

1 ¼ X2
0=ðX

2
0 þ d2Þ.

In Fig. 9 the time-dependent dipole moment d(t) and the level
populations n0(t) and n1(t) for d = 0.08 X0 and d = 2.2 X0 are shown.
The effect of the detuning manifests itself in an incomplete popu-
lation of the excited state and a consequent decrease in the ampli-
tude of the envelope of the dipole moment that is proportional toffiffiffiffiffiffiffiffiffiffi

n0n1
p

. For small detuning the minima and the maxima of n1 coin-
cide with minima of the envelope, but for larger detuning the di-
pole moment only goes to zero for the minima of n1. In Fig. 9a
the detuning is small but non-zero, hence the neck at the minima
of n0. The neck grows with d and evolves into a maximum for
Fig. 9b. Thus, the first minimum in Fig. 9b corresponds to one com-
plete cycle and can be identified with the second minimum in
Fig. 9a. We note that looking only at the dipole moment is insuffi-
cient to discern between resonant and detuned Rabi oscillations,
only studying the level populations gives the complete picture.
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For the system specified above a comparison between the ana-
lytic solution of Eqs. (17), (18) and the results of the time-propaga-
tion with the octopus code [13,14] shows a perfect agreement,
which confirms that the conditions (14) are fulfilled for the chosen
values of E0 and x.

The KS Hamiltonian corresponding to (13) is given as

Hs ¼ H0
s þ

XN

j¼1

vdyn
hxc ðxj; tÞ þ xjE0 sinðxtÞ

� �
; ð19Þ

where the static KS Hamiltonian reads

H0
s ¼

XN

j¼1

�
r2

j

2
þ vextðxjÞ þ vhxc½q0�ðxjÞ: ð20Þ

We denote the eigenfunctions of H0
s with /k(x) and their eigen-

values as �s
k. As we are using a two-electron system, a single orbital

is doubly occupied in the KS system. The time evolution of this orbi-
tal follows from the KS equation

i@t/ðx; tÞ ¼ Hs/ðx; tÞ ð21Þ

with the initial condition /(x, t = 0) = /0(x). This equation is non-lin-
ear due to the dependence of the Hartree-exchange-correlation po-
tential vhxc on the density, q(x,t) = 2j/(x, t)j2. The time-dependent
dipole moment d(t) is an explicit functional of the density i.e.
dðtÞ ¼

R
xqðx; tÞ dx. The exact KS system reproduces the exact

many-body density q(x, t) and, hence, the exact dipole moment
d(t). However, this need not be true for an approximate functional.
Especially, using adiabatic approximations has been shown to have
a dramatic effect on the calculated density during Rabi oscillations
[7].

Propagating with the EXX and ALDA (see Section 3) results in
the dipole moments shown in Fig. 10. The resonant frequencies
are calculated from linear response which yields xALDA = 0.476 Ha
and xEXX = 0.549 Ha. We then apply a laser field in analogy to the
exact calculation with an amplitude of E0 ¼ 0:0125x using the res-
onant frequency for each case. We observe in the level populations
that both EXX and ALDA show the characteristic signatures of de-
tuned Rabi oscillations despite the fact that the applied laser is in
resonance with the system.

To clarify whether Rabi oscillations are well described in the
context of adiabatic TDDFT we study the Hamiltonian (19) in more
detail. The Hartree and xc potentials, vhxc[q], render the KS differ-
ential equation non-linear. More specifically, for an adiabatic
approximation the potential at time t is a functional of the density
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Fig. 10. Dipole moment (red) and level populations ns
1ðtÞ (solid black line) and ns

0ðtÞ
(dashed black line) for EXX (a) and ALDA (b). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
at this time, i.e. vhxc(t) = vhxc[q(t)]. In the following, we show that
vhxc(t) introduces a detuning that drives the system out of reso-
nance. We again rely on the conditions (14), i.e. describe the KS
system as an effective two-level system. Therefore, the time-
dependent orbital /(x, t) is given as a linear combination of the
ground-state KS orbital /0 and the first excited state orbital /1

/ðx; tÞ ¼ as
0ðtÞ/0ðxÞ þ as

1ðtÞ/1ðxÞ: ð22Þ

Projecting the KS Hamiltonian (19) onto the two-level KS space (22)
yields the 2 � 2 matrix

�s
0 þ �xc

0 ðtÞ ds
10EðtÞ þ F xcðtÞ

ds
10EðtÞ þ F	xcðtÞ �s

1 þ �xc
1 ðtÞ

 !
ð23Þ

with ds
10 ¼ /1jx̂j/0h i; �xc

j ðtÞ ¼ /jjv̂dyn
hxc ðtÞj/j

D E
, and F xcðtÞ ¼

/0jv̂dyn
hxc ðtÞj/1

D E
. This matrix enters Eq. (16) to determine the coeffi-

cients as
0ðtÞ and as

1ðtÞ. Compared to Eq. (16) we notice that each en-

try contains an additional term depending on vdyn
hxc , i.e. both the

electric field and the KS eigenvalues are modified. In order to inves-
tigate the consequences of the additional terms we use the EXX
functional for which relatively simple analytic expressions for the
additional matrix elements can be derived.

For the two-electron case investigated here, the Hartree-ex-
change-correlation potential vEXX

hxc ðx; tÞ is equal to half the Hartree
potential and, hence, given as

vEXX
hxc ðx; tÞ ¼

1
2

Z
q0ðx0Þ þ dqðx0; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ a2

q dx0; ð24Þ

where we split the total density q(x, t) into a time-independent con-
tribution q0(x) = 2j/0(x)j2 and a rest dq(x, t) which can be calculated
from Eq. (22) as

dqðx; tÞ ¼ 2jas
1j

2ðj/1ðxÞj
2 � j/0ðxÞj

2Þ
þ 4ds

10Reðas
0ðtÞ 	 as

1ðtÞÞ/1ðxÞ/0ðxÞ: ð25Þ

The part of Eq. (24) containing q0 determines vhxc[q0] while dq re-
sults in the additional vdyn

hxc . Since /0 and /1 usually have opposite
spatial symmetry (if the Hamiltonian is symmetric) the first term
in Eq. (25) is symmetric while the second is antisymmetric. This re-
sults in the first term only contributing to the diagonal elements of
the matrix (23) while the second term only contributes to the off-
diagonal elements. Defining the level populations in the KS system
as ns

j ðtÞ ¼ jas
j ðtÞj

2 allows us to rewrite the contributions to the diag-
onal terms as

�xc
j ðtÞ ¼ kjns

1ðtÞ; ð26Þ

where, for the EXX approximation, the coefficient kj reads

kj ¼
Z Z ðj/1ðx0Þj

2 � j/0ðx0Þj
2Þj/jðxÞj

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ a2

q dxdx0: ð27Þ

For the off-diagonal contribution we recall that
dsðtÞ ¼ 2ds

10Re as
0ðtÞ 	 as

1ðtÞ
� �

, as in the exact case, and rewrite the
contribution of vdyn

hxc ðtÞ to the off-diagonal terms as a coefficient g
multiplied by the time-dependent dipole moment

F xcðtÞ ¼ g
dsðtÞ
ds

10

: ð28Þ

For the two-electron system in the EXX approximation g is given as

g ¼
Z Z

/1ðx0Þ/0ðx0Þ/0ðxÞ/1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ a2

q dxdx0: ð29Þ
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The coefficient g also enters the calculation of the resonant frequen-
cies in linear response. Within the single-pole approximation the
resonant frequency is given as xs

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DsðDs þ 2gÞ

p
which for the

EXX functional yields xEXX = 0.532 Ha. The deviation from the fre-
quency calculated from time propagation of the Hamiltonian (19)
in octopus is of the order of 3%, coinciding with the deviation of
our system from a true two-level system which we estimate from
1� ðns

0ðtÞ þ ns
1ðtÞÞ

� �
. Using, as in the exact case, the RWA we obtain

to leading order in k/x0 and g/x0 the following equation of motion
for the level population n1(t)

@2
t ns

1ðtÞ ¼ �
c2

2
ns

1ðtÞ
2 þX2

s

� �
ns

1ðtÞ þ
1
2

X2
s ð30Þ

with Xs ¼ ds
10E0 and c = k � 2g. Neglecting the higher order terms in

k/x0 and g/x0 introduces an error of about 10% in favor of keeping
the equation simple while still containing the important physical
effects. Unlike Eq. (18) which represents a harmonic oscillator, Eq.
(30) corresponds to an anharmonic quartic oscillator and its solu-
tion is given in terms of Jacobi elliptic functions [23]. Equivalently,
Eq. (30) can be integrated numerically. Even though the oscillator is
no longer harmonic the detuning still results in an increase of the
restoring force. In other words, the adiabatic approximation intro-
duces a time-dependent detuning proportional to cns

1ðtÞ.
Using the same 1D model system (13) as before and diagonaliz-

ing the Hamiltonian (19) gives for the bare KS eigenvalues
�EXX

0 ¼ �0:750 Ha and �EXX
1 ¼ �0:257 Ha which yields Ds = 0.494 Ha.

For the various matrix elements we obtain ds
10 ¼ 0:897, g = 0.071,

k = �0.125, and c = �0.268. As a result the detuning is of the order
of 5% of the resonant frequency, i.e. quite large compared to the
detuning which is necessary to destroy the resonant Rabi behavior
(see Fig. 9) which explains the results we see for the dipole moment
and level populations (see Fig. 10a). In Fig. 11 we plot the potential
corresponding to the restoring forces in the differential Eqs. (18)
and (30). As we can see, the dynamical detuning in the EXX calcu-
lation has a similar effect on the squeezing of the potential as the
large detuning in the linear Rabi oscillations.

The behavior using ALDA is very similar to the one for the EXX
approximation (see Fig. 10b). The analysis, however, is more in-
volved due to the functional not being linear in the density. We
can conclude that any adiabatic functional, even the exact adia-
batic one [24], will lead to a detuning in the description of Rabi
oscillations due to the lack of memory and the fact that the exact
density changes dramatically during the transition. For the exact
functional the detuning effect is compensated by a dependence
on the density at previous times.
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Fig. 11. Potentials corresponding to the differential Eqs. (18) and (30). The
dynamical detuning leads to a quartic potential which has a similar effect to the
potential as a large detuning.
6. Reduced density-matrix functional theory

The use of adiabatic approximations in DFT is known to miss
certain aspects of the interacting system, one of which being the
double excitations discussed in Section 4. Another example are
charge-transfer excitations which, while appearing in linear re-
sponse, are not described correctly [6]. Recently, it has been sug-
gested that using reduced density-matrix functional theory
(RDMFT) these problems can be addressed, even within adiabatic
approximations [25].

RDMFT uses the one-body density matrix (1RDM)

c1ðr; r0Þ ¼ N
Z Z

d3r2 . . . d3rNWðr; r2 . . . rNÞW	ðr0; r2 . . . rNÞ ð31Þ

as its basic variable. Approximations within this theory are usually
stated in terms of the eigenfunctions uj(r) and eigenvalues nj of
c1(r,r0) which satisfyZ

d3r0c1ðr; r0Þujðr0Þ ¼ njujðrÞ ð32Þ

and are called natural orbitals and occupation numbers, respec-
tively. The exact kinetic energy of a system can be written explicitly
in terms of the 1RDM which presents a major advantage compared
to standard density functional theory.

Since in general the interaction energy is known as an exact
functional of the diagonal c2(r,r0 ; r,r0) of the two-body density ma-
trix (2RDM)

c2ðr1; r2; r01; r
0
2Þ ¼

NðN � 1Þ
2

Z Z
d3r3 . . . d3rN

Wðr1; r2; r3 . . . rNÞW	ðr01; r02; r3 . . . rNÞ; ð33Þ

RDMFT can be viewed as a way to express the diagonal of the 2RDM
as a functional of the 1RDM. Using this functional, the interaction
energy is written typically as a sum of the Hartree energy and the
exchange-correlation (xc) energy, where only the correlation en-
ergy needs to be approximated. Approximations are usually stated
by writing either the diagonal of the 2RDM or the xc energy as a
functional of the natural orbitals and occupation numbers. For most
currently employed functionals the xc energy takes the form [26–
31]

Exc½fujg; fnjg� ¼ �
1
2

X1
j;k¼1

f ðnj;nkÞ

�
Z Z ujðrÞu	j ðr0Þukðr0Þu	kðrÞ

jr� r0j d3rd3r0; ð34Þ

i.e. it is given as an exchange integral modified by a function
depending on the occupation numbers. Generally, one can expand
the 2RDM in the basis of the natural orbitals

c2ðr1; r2; r01; r
0
2Þ ¼

X
ijkl

c2;ijkluiðr1Þujðr2Þu	kðr01Þu	l ðr02Þ; ð35Þ

which gives rise to expansion coefficients c2,ijkl. Restricting these
coefficients to the form

c2;ijkl ¼ ninjdikdjl � f ðni;nkÞdildjk; ð36Þ

the diagonal, c2(r,r0 ; r,r0), yields the Hartree energy and the xc en-
ergy given in Eq. (34).

Currently, an effort is made to extend the static theory in order
to describe time-dependent systems. The most straightforward
extension is again achieved by employing an adiabatic approxima-
tion [32,33], i.e. the 2RDM at time t is only treated as a functional of
the 1RDM at this point in time. Consequently, in Eq. (35), c2 aquires
a dependence on time t as do the occupation numbers and natural
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orbitals. For the coefficients of the 2RDM (in the basis of the natu-
ral orbitals at time t) such an adiabatic approximation amounts to

c2;ijklðtÞ ¼ gijkl½fnjðtÞg�dikdjl � hijkl½fnjðtÞg�dildjk þ kijkl½fnjðtÞg�; ð37Þ

where gijkl(t) and hijkl(t) are the time-dependent coefficients for the
Hartree and exchange-type integrals, respectively. The time-depen-
dent cumulant kijkl(t) contains all contributions to the 2RDM which
are not of Hartree or exchange type. All three coefficients are
approximated as functionals of the occupation numbers. Comparing
Eqs. (36) and (37) we note, that an adiabatic extension of the cur-
rently employed static functionals to the time domain leads to a
vanishing cumulant k. By inserting Eq. (37) into the equation of mo-
tion for the natural occupation numbers [32], we find

i@tnkðtÞ ¼
X

ijl

kijklðtÞhijjv intjkliðtÞ � c:c:; ð38Þ

which directly illustrates that adiabatic approximations based on
the form of Eq. (36) cause a zero right-hand side and, hence, lead
to occupation numbers which are constant in time. While one can
imagine this to be a reasonable approximation in some situations,
it will generally not be the case. Including an explicit cumulant in
the approximation of c2,ijkl(t) leads to occupation numbers which
can aquire a true time-dependence, even if one chooses an adiabatic
approximation for kijkl(t).

To assess the quality of the adiabatic approximation in RDMFT
quantitatively, we employ again our 1D model. For such model sys-
tems with a small number of electrons one can extract the exact
1RDM from the solution of the time-dependent Schrödinger equa-
tion of the interacting system, which allows us to explicitly inves-
tigate for which situations constant occupation numbers yield a
reasonable description. For this purpose, we employ two different
two-electron systems, a 1D helium atom and a 1D hydrogen mol-
ecule. The external potentials are given by

vHe
extðxÞ ¼ �

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2
p ; ð39Þ

vH2
extðxÞ ¼ �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ d=2Þ2 þ a2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� d=2Þ2 þ a2

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ a2
p ; ð40Þ

i.e. we are using a soft-Coulomb potential to describe the interac-
tion between the nuclei and the electrons and, for the hydrogen
molecule, also the interaction between the two nuclei.
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Fig. 12. Changes in the dipole moment (green) and the first two natural occupation num
linear response to a d-kick of strength E0 ¼ 0:05 Ha/bohr. (For interpretation of the refere
article.)
In the following, we investigate two different situations. In the
first case we apply a kick, Eq. (9), which provides an initial momen-
tum to the system. We choose the strength E0 ¼ 0:05 Ha/bohr such
that the evolution can be described in linear response. As a second
case, we investigate the transition of the system, here the helium
atom, from its ground state to the first excited singlet state. To this
end we use optimal control theory [34–36] to find an optimized la-
ser pulse which induces a transition with a population of the ex-
cited state of 98.59% at the end of the pulse.

In Fig. 12, we show the dipole moment and the change in the
first two natural occupation numbers, D nj(t) = nj(t) � nj(t = 0), for
both the helium atom and the hydrogen molecule. The strength
of the kick was chosen as the maximum possible while staying
within a linear response description. As we can see, the occupation
numbers show pronounced oscillations which, however, remain
small in amplitude compared to their ground state values while
the dipole moment shows the characteristic oscillations. Hence,
in linear response, a description with constant occupation numbers
will be appropriate.

As an example where the occupation numbers change signifi-
cantly, we examine the transition of the helium atom from its sin-
glet ground state to the first excited singlet state which, due to
spin, has multi-reference character. The optimized laser pulse
which achieves 98.59% of occupation in the excited state after a
time of 250 a.u. is shown in Fig. 13. We also show the evolution
of the first two natural occupation numbers which starting close
to one and zero, respectively, approach each other during the prop-
agation. In this situation, any description which enforces constant
occupation numbers will clearly not describe the situation
accurately.

To describe a situation where occupation numbers change in
time, functionals in RDMFT have to incorporate time-dependent
approximations for the cumulant of the reduced two-body density
matrix [37]. Possible approaches along these lines could be based
on reconstruction approaches for the cumulant of the two-body
matrix [30], or alternatively on antisymmetrized geminal power
(AGP) wave functions [38], which was proposed recently [32]
and will be investigated in a future study.
7. Conclusions and outlook

In this work we aimed to partially unveil the role of electron-
correlation in the electron dynamics of systems driven out of
equilibrium. To reach this goal, we have used different 1D model
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Fig. 13. The upper panel displays the laser amplitude of an optimized laser pulse
that induces a transition from the ground state to the first excited singlet state of
Helium. In the lower panel the two largest occupation numbers of the reduced one-
body density matrix are shown as function of time.
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systems where we could assess, by comparing with the exact solu-
tion, the quality of density and reduced density-matrix functionals
in various situations where the system interacts with external
time-dependent fields. We looked at both linear and non-linear re-
sponses. The 1DALDA approximation shows the same behavior as
its 3D counterpart leading to the well-known underestimation of
the ionization potential and a failure to reproduce the excitations
to Rydberg states. Also, as has been seen in the past [4,20], we
showed that in the linear response function double excitations
do not appear when using adiabatic approximations (exemplified
here by using both ALDA and EXX). For the case studied here,
where spatial symmetry has been broken and the ground state is
a described by a doubly occupied KS orbital, double excitations
become visible beyond linear response for the above mentioned
adiabatic functionals. In going to the non-linear regime, we
demonstrate that the description of Rabi oscillations within all adi-
abatic functionals leads to a dynamical detuning as the system is
driven out of resonance by the changes in the potential due to
the changing density associated with the transition during the Rabi
oscillation. This manifests itself in a very small population of the
excited state in contrast to the exact resonant propagation. Hence,
the description of Rabi oscillations provides a very good test case
for the development of non-adiabatic functionals.

Within RDMFT adiabatic extensions of commonly employed
ground-state functionals lead to constant occupation numbers.
This was shown to be a valid description within linear response
but it turns out to be a poor approximation in situations where
transitions to and among excited states (with possible multi-refer-
ence character) take place during the evolution of the system.

In the future, the 1D model systems will be used to improve
existing approximations, especially going beyond the adiabatic
dependence on the density or the density matrix. Possible routes
along these lines include e.g. orbital functionals in TDDFT, or expli-
cit cumulant approximations in time-dependent RDMFT.
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