Increased efficiency of current-induced motion of chiral domain walls by interface engineering
Guan, Yicheng, Xilin Zhou, Tianping Ma, Robin Bläsing, Hakan Deniz, See Yang, S. S. P. Parkin
Advanced Materials PREPRINT, pp 202007991/1-9 (2021)
abstractMagnetic racetrack devices are promising candidates for next-generation memories. These spintronic shift-register devices are formed from perpendicularly magnetized ferromagnet/heavy metal thin-film systems. Data are encoded in domain wall magnetic bits that have a chiral Néel structure that is stabilized by an interfacial Dzyaloshinskii-Moriya interaction. The bits are manipulated by spin currents generated from electrical currents that are passed through the heavy metal layers. Increased efficiency of the current-induced domain wall motion is a prerequisite for commercially viable racetrack devices. Here, significantly increased efficiency with substantially lower threshold current densities and enhanced domain wall velocities is demonstrated by the introduction of atomically thin 4d and 5d metal "dusting" layers at the interface between the lower magnetic layer of the racetrack (here cobalt) and platinum. The greatest efficiency is found for dusting layers of palladium and rhodium, just one monolayer thick, for which the domain wall's velocity is increased by up to a factor of 3.5. Remarkably, when the heavy metal layer is formed from the dusting layer material alone, the efficiency is rather reduced by an order of magnitude. The results point to the critical role of interface engineering for the development of efficient racetrack memory devices.
A charge-density-wave topological semimetal
Shi, Wujun, Benjamin J Wieder, Holger L. Meyerheim, Yan Sun, Yang Zhang, Yiwei Li, Lei Shen, Yanpeng Qi, Lexian Yang, Jagannath Jena, Peter Werner, Klaus Koepernik, S. S. P. Parkin, Yulin Chen, Claudia Felser, B. Andrei Bernevig, Zhijun Wang
Nature Physics PREPRINT, (2021)
abstractTopological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the single-particle band structure is modified by strong interactions. Here we demonstrate that the room-temperature phase of (TaSe4)2I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-one-dimensional structure, (TaSe4)2I also hosts an established charge-density wave instability just below room temperature. We show that the charge-density wave in (TaSe4)2I couples the bulk Weyl points and opens a bandgap. The correlation-driven topological phase transition in (TaSe4)2I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.