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0.-]. Wacker, R. Kiimmel, and E. K. U. Gross

Physikalisches Institut der Universitit Wiirzburg, D-97074 Wiirzburg, Germany
(Received 27 October 1993)

A density-functional theory is established for strongly correlated inhomogeneous superconductors
subject to time-dependent external scalar, vector, and pairing potentials. Hohenberg-Kohn and Kohn-
Sham type theorems are formulated for gauge-invariant densities. The central result is a set of time-
dependent Bogoliubov—de Gennes equations which include exchange-correlation effects.
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Dynamic charge transport phenomena observed in
conventional [1-5] and strongly correlated inhomo-

geneous superconductors [6—8] have been interpreted

theoretically using results from time-dependent mean-
field theories [9-14]. Among these theories the
time-dependent Bogoliubov—de Gennes equations have
been especially useful in clarifying effects due to An-
dreev scattering [12—15]. However, they do not include
exchange-correlation effects. Thus, there has remained
some uncertainty so far whether considerations based
on their solutions are pertinent to high-temperature and
heavy-fermion [16] superconductors. - '

The purpose of this Letter is the presentation of a
time-dependent density-functional theory for supercon-
ductors. The resulting time-dependent Bogoliubov—-de
Gennes equations, which take into account exchange-
correlation effects, are suitable for the description of dy-
namic processes in strongly correlated inhomogeneous
superconductors. R

Our approach is based on methods from the
time-dependent density-functional theory for nonsuper-
conducting systems [17—20] combined with ideas from
time-independent density-functional theory for supercon-
ductors [21-24]. The central result of the latter is a set of
stationary Bogoliubov—de Gennes equations that formally
include all correlation effects via an exchange-correlation
functional. They have recently been solved numeri-
cally with a phenomenological approximation for the
exchange-correlation functional [25].

We consider superconductors described by the Hamil-
tonian T
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The . (r,t) are the usual electronic field operators in
the Heisenberg picture. Summation over double spin in-
dices ¢ is implied. The system is subject to three time-
dependent external fields: the vector potential A(r,?), the
scalar potential V(r,?), and the pairing potential D(r,?)
[22], which can be viewed as being induced by an adja-
cent superconductor via the proximity effect [21]. The lo-
cal interaction w(r;,ry) = w.(r;,ry) — 8(r; — ra)we(r;)
is assumed to consist of a repulsive, e.g., Coulomb, term
w.(ry, r2) and the spatially varying attractive Gorkov point
contact interaction w,(r;) [26,27]. The time-independent
many-body state of the system (in the Heisenberg picture)
which does not have to be the ground state is given by
the initial state |Wg) at the initial time #. The dynamics
of the system is determined by the Heisenberg equation
of motion i(8/9t),(r,t) = [, (r,1), Hy ap(t)]- for the
field operators, which results in a unique mapping F of
the potentials on the field operators:

F: (V(r,1),A(r,1),D(r, 1)) — ¢, 1). (6)

The crucial step in the formulation of any density-
functional theory is in the identification of the appropri-
ate densities for which a Hohenberg-Kohn-like theorem
can be proved. For this purpose we employ the cur-
rent density j(r, ) = (¥olj(r, )| ¥o), j(r,?) being the usual
current-density operator in the Heisenberg picture, and the
anomalous density

A, 1) = (Woln(e, De, e LoV OLwy, ()

which are invariant under the gauge transformation
Uo(r, 1) — ¢, (r,t)exp[—ieA(r,t)/c], and the correspond-
ing transformations for V, A, and D, so that the action
involving Hy 4 p(t) of Eq. (1) is gauge invariant. For
the gauge function A(r,#) we choose the initial value
A(r, t9) = Omod(2wc/e). This class of transformations
leaves the Heisenberg field operators and thus all physical
properties of the system unchanged at the initial time #,.
The choice of the anomalous density Ap(r,¢) is partly
motivated by the fact that gauge-invariant phases (IP)
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appear in the Josephson equations for superconducting
weak links.

The central Hohenberg- Kohn like statement to be
proved subsequently is as follows.

Theorem I: The densities (j(r,t), Ajp(r,z)) and
(j'(r, 1), Alp(r, 1)) which evolve from a common initial
state |¥,) under the influence of two sets of potentials
V(r,1),A(,1),D(r,1)) and (V'(r,1),A(r,1),D'(r,1)),

differing by more than a gauge transformation with '

A(r, to) = 0, are always different, provided the potentials
can be expanded in Taylor series around the initial time fo.

Since we are working with gauge-invariant densities,
the proof of the theorem can be carried out in a particular
gauge where the scalar potentials vanish. We indicate the
potentials in this gauge by a tilde. Thus we have to show
that

(0,A(r,1),D(r,2)) # (0,A(r,1),D'(r,1)) ®)

implies

(@, 1), Arp(r, 1) # ('@, 1), Alp(r,1)). )

If A(r,7) # A'(r, 1), then the statement of the theo-
rem is trivially true since j(r,z) # j'(r,%). Otherwise,
following Runge and Gross [17], we observe that the po-
tentials in Eq. (8) are different if their Taylor coefﬁc1ents
are not the same. Thus

(8% /at*)[A(r, 1) — Al(r,1)] I,=,oﬁ{: g: ]1( ; ]l{ - 10)
and
8*/3*)[D(r,1) — D'(r,t)]];= ,n{;&g g:,’:; m
(1

must be satisfied with suitable integers / and m. If [ < oo,
m may be infinite; if m < «, [ may be infinite, i.e., it is
sufficient that either the vector or the pair potentials are
different. If (10) and (11) are satisfied with m = [, we
calculate the /th time derivative of the current densities
j(r,2) and j'(r,t) by applying the Heisenberg equation of
motion [ times. Taking the difference at the initial time
tg, we obtain with the help of Eqgs. (10) and (11)

{
P n(r ) (z —) [A(r,?)
- A, D)= # 0,
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(12)
where n(r, t) is the particle density at o. If (10) and (11)

are satisfied with m < [, the same procedure applied to
the anomalous densities Ap(r, t) and Alp(r, ¢) results in

I
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‘The prefactor of the mth time derivative can be
expressed by the particle density and the Dirac & function
and is equal to n(r,z) — 6(0) # 0. The occurrence of
8(0) is the usual consequence of assuming a local pair
potential [28]. For the present purpose it is sufficient that
the prefactor is nonzero in the distributional sense. As a
consequence of Egs. (12) and (13), the set of densities
(j(r, 1), Ap(r, 1)) will differ from the set of densities

(j'(r,2), Alp(r, 1)) at times infinitesimally later than f.

Hence they are different. This proves Theorem I, i.e.,

in a given gauge, the potentials are unique functionals

V[j,Ap], Alj, Aspl, and D[j, Ajp] of the densities.

By virtue of the mapping (6), the field operators are
functlonals of the potentials V(r,t), A(r,?), and D(r, ).
As a consequence of Theorem I they can, alternatively,
be considered as functionals of the densities, too. Thus
all observable quantities represented by the expecta-
tion values with respect to |¥o) of gauge-invariant op-
erators O(r,t) are unique functionals of the densities,
(O(r,1)) = O[j,Arp](r,t). In particular, the particle den-
sity n[j, Ajp] (r,#) is a unique functional.

On the basis of Theorem I we now derive a variational
principle. To this end we consider the quantum mechani-
cal action

0= [: dr<—;—fd3r{‘/fl(r, ) (%%%(m))

_(i % (ﬁ;(r,t))(ﬁa-(l', l‘)} - iIVo,Ao,DO(I)>, (14)

where Vo, Ay, and Dy are given potentials characterizing
the time-dependent system at hand. Vj, Ao, and Dy
are to be distinguished from the potentials V[j, Arp],
Alj,Arp], and DI[j,Ap], corresponding, by Theorem I,
to an arbitrary pair of densities (j,Arp). With these
preliminaries the variational principle can be stated as
follows.

Theorem II: The action Q can be written as a unique
functional Qy,,.p,LJ. Arr] of the densities j and Arp. In
terms of the potentials V[j, Arp], A[j, Arp], D[j, Arp], and
the density n[j, Arp], the action functional is

@, 1) +ccl, (15)
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where the gauge has been chosen such that V[j, A;p] (r t) equals the given scalar potential Vy(r,t). B[j,Aip] is a
universal functional depending only on the interaction W but not on the external potentlals Vo, Ag, and Dy of the
particular system considered. Qvo AoDoLi> Arp] is stationary for the actual densities j° and A, corresponding to the
given potentials Vp, Ao, and Dy, i.e., the actual densities can be computed from the Euler-Lagrange equations

8 Qvo.a0.00LJ, Arp] _ 8Qvo.a0,0,L0, Arp] _
8j(r,1) EYCRR SALp(e,1)  ljoa,

a7

The proof of the theorem, not reproduced here, follows the reasomng of Runge and Gross [17], with the universal
functional B[j, Arp] defined as

B[j,Ap] = R[j,Ap] — /t Idf (WLj, Arp] (2)) (18)

with

R[j,Ap] = —'/ dff d3r<$T[JaAIP](l - - ’—)‘pa'[J’AIP]) + c.c. (19

As usual in density-functional theory a particularly useful consequence of the variational Theorem II is the possibility
of computing the densities of the interacting system as densities of a noninteracting system with appropriate single-
particle potentials. This is stated by the following Kohn-Sham-like theorem.

Theorem III: There exist unique functionals V,[j, Aip], As[j,A1p], and D,[j, A1p] such that the densities

1
jlr,r) = Z{—, v, (r, 1)Vu (r, 1) + c.c.} + == Ao, 1) Y 20, v (x, 1) (20)
n mi mc n
and
A[p(r, t) — Z un(l’, t)v:(r, [)eZi jlo dat’ V,»o(r,t’)’ (21)
resulting from the solutions u,(r, t) and v,(r, t) of the time-dependent single-particle equations
. 8 [ up(r,1) D+ = Aot )P + Vio(r,?) D;o(r, 1) un(r, 1)
L = * 1 ra e 2 ’ (22)
ar \ vp(r,1) Dyy(r, 1) —am B — ¢ Aco(r, ) — Violr,1) / \ valr,?)

are identical with the densities j° and A%p of the interacting system at T = 0 K. Here, Vg, A0, Dsg is a shorthand for
Vi[§°, A%, A [3% AYe], and D,[§°, A%p], respectively.

In order to prove this theorem, we first consider a system of noninteracting particles (W = 0) moving in external
potentials V,(r,t), A,(r,t), and D,(r,#). The action functional of this noninteracting system is given by

2 [ :0 ' V,(r.t')

4
04 ao i Al = RLiAre] — Py o [ih Arp] + j dt [ &r[Dy(r, e ALED) +cel,  (23)
]

where R*[j,Ajp] and Py, 5 [j,A1p] are the nonmteractmg analogs of the functionals (19) and (16). Theorem II is
valid for any given particle-particle interaction W, in particular also for the special case W = 0, i.e., for noninteracting
particles. As a consequence, the potentials Vg, A;, and Do which reproduce the densities j° and A[p of the interacting
system must satisfy

8QV,0,4,0.0,0L3> Arp] _ o 9QV0a.00,000 Arp]
8j(r,1) oAl 8AL(r,0) jo.0%

=0. 24)

2917



VOLUME 73, NUMBER 21 PHYSICAL REVIEW LETTERS 21 NOVEMBER 1994

Equations (23) and (24) are valid in any gauge. To make contact with the interacting functional (15) we now fix the
gauge such that V;o = V. Defining a universal exchange-correlation functional by

Ol Are] = R°Tj, Arp] — BLj, Are] + [ dr f & App(r, Ow(0)AT(E, 1), 25)

the action functional (15) of the interacting system can be written as
Ovo,a0.00Ld: A1p] ="R°[J, A1p] — Pyoanlis Atp] — Qucl[ds Arp]

+ f dt f Do 0 e N (1) 4 el + Al Owg(NAL( ). (26)

The explicit form of A,y and D,y is then determined by eqﬁating the variational equations (17) of the interacting
system with those of the noninteracting system (24). By virtue of Eq. (26) one obtains

8PYya,0ls Are] _ 8Pvua.li,Are] 8Q:c[j,Arp]
— s F = —fenrs 7o —Eeie 252 , @27
8j(r,1) 70.4% 8j(e,e)  IpaY 8j(r.1) Lol
2 [* drvoesy  OPyya,oLds Arp] 2 [ dt' Vo(r,t')
D o(r, e i [p 0 vole —m ot = w,(r) A%(r, 1) + Do(r,1)e [t Vot
) AP .
_ 8Py,anli, Arp] _80:[J,Arr] 28)
BALR(r,)  1pa%  SAT(r,) oAl

|
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