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The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids
treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are
determined at zero external magnetic field. We find that for magnetic �Fe, Co, and Ni� and nonmagnetic �Si and
Ge� solids, the exact-exchange current-spin-density functional approach does not significantly improve the
accuracy of the corresponding spin-density functional results.

DOI: 10.1103/PhysRevB.76.100401 PACS number�s�: 75.10.Lp, 71.15.Mb, 71.15.Rf

In the past 30 years, several generalizations of density
functional theory �DFT� have been proposed. In the early
1970’s, DFT was extended to spin-DFT �SDFT�1 by includ-
ing the spin magnetization as a basic quantity in addition to
the density. This allows for coupling of the spin degrees of
freedom to external magnetic fields and produces better re-
sults for spontaneously spin-polarized systems using ap-
proximate functionals. Adding yet another density, the para-
magnetic current, leads to the framework of current-SDFT
�CSDFT�.2,3 CSDFT includes the coupling of the external
magnetic field, through its corresponding vector potential, to
the orbital-degrees of freedom.3

SDFT has been enormously successful in predicting the
magnetic properties of materials. This success can be attrib-
uted to the availability of exchange correlation �XC� func-
tionals which, even though originally designed for nonmag-
netic systems, could be systematically extended to the spin
polarized case. The most popular of these functionals are the
local spin density approximation �LSDA� and the general-
ized gradient approximation �GGA�. CSDFT, on the other
hand, has not enjoyed the same attention mainly because of
problems which arise in the extension of LSDA and GGA to
include the paramagnetic current density.4–6 Exposing the
homogeneous electron gas to an external magnetic field leads
to the appearance of Landau levels which, in turn, give rise
to derivative discontinuities in the resulting XC energy den-
sity. Using this quantity to construct �semi�local functionals
then automatically leads to local discontinuities in the corre-
sponding XC potentials, which are then awkward to use in
practical calculations.

Such problems can be avoided with the use of orbital
functionals and this fact, coupled with the success of these
functionals for SDFT calculations, has led to recent interest
in orbital functionals for CSDFT.7–11 The results from these
works have shown mixed success. A modified version of the
original CSDFT12 lead to promising results for spin-orbit in-
duced splittings of bands in solids, such as Si and Ge.9 In
contrast it was found that for open-shell atoms and quantum
dots the difference between SDFT and CSDFT results was
minimal.7,8 Similarly, calculations for solids using a local
vorticity functional13 and for quantum dots using a LSDA-

type XC functional14 could not establish the superiority of
CSDFT over SDFT.

In this work we present a systematic comparison of the
relative merits of CSDFT and SDFT for solids. Since the
Kohn-Sham �KS� system in CSDFT reproduces the paramag-
netic current of the interacting system, one would expect
differences between SDFT and CSDFT results for orbital
magnetic moments �which can be directly derived from the
current�. With this in mind we calculate the orbital magnetic
moment of the spontaneous magnets Fe, Co, and Ni. Since
CSDFT is believed to improve the spin-orbit induced band
splitting in the nonmagnetic semiconductors Si and Ge9 it
makes these materials interesting candidates for a study of
the differences between the two approaches.

Following Vignale and Rasolt,2,3 the ground-state energy
of a �nonrelativistic� system of interacting electrons in the
presence of an external magnetic field B0�r�=��A0�r� can
be written as functional of three independent densities: the
particle density ��r�, the magnetization density m�r�, and the
paramagnetic current density jp�r�. This functional is given
by

E��,m,jp� = Ts��,m,jp� + U��� + EXC��,m,jp�

+� ��r�v0�r�d3r −� m�r� · B0�r�d3r

+
1

c
� jp�r� · A0�r�d3r +

1

2c2 � ��r�A0
2�r�d3r ,

�1�

where Ts�� ,m , jp� is the kinetic energy functional of non-
interacting electrons, U��� is the Hartree energy, and
EXC�� ,m , jp� is the exchange-correlation energy. Minimiza-
tion of Eq. �1� with respect to the three basic densities leads
to the Kohn-Sham �KS� equation which reads

�1

2
�− i� +

1

c
As�r��2

+ vs�r� + �B� · Bs�r�	� j�r� = � j� j�r� .

�2�

Here � is the vector of Pauli matrices and the �i are spinor
valued wave functions. The effective potentials vs, Bs, and
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As are such that the ground-state densities �, m, and jp of the
interacting system are reproduced. These effective potentials
are given by

vs�r� = v0�r� + vH�r� + vXC�r� +
1

2c2 �A0
2�r� − As

2�r�� ,

Bs�r� = B0�r� + BXC�r� ,

As�r� = A0�r� + AXC�r� . �3�

Here, v0 is the external electrostatic potential and vH�r�
=
��r�� / �r−r� �d3r� is the Hartree potential. The XC poten-
tials are given as functional derivatives of the XC energy
with respect to the corresponding conjugate densities which
can be obtained from KS wave functions using the following
relations:

��r� = �
i=1

occ

�i
†�r��i�r� ,

m�r� = − �B�
i=1

occ

�i
†�r���i�r� ,

jp�r� =
1

2i
�
i=1

occ

�i
†�r���i�r� − ���i

†�r���i�r�� , �4�

where the sum runs over the occupied orbitals. For practical
calculations, an approximation for the XC energy functional
EXC�� ,m , jp� has to be adopted. Here we concentrate on ap-
proximations of the XC functional which explicitly depend
on the KS orbitals and therefore only implicitly on the den-
sities. Such orbital functionals are usually treated within the
framework of the so-called optimized effective potential
�OEP� method15–18 where the XC potential is obtained as
solution of the OEP integral equation. Recently, the OEP
method has been generalized to noncollinear SDFT19 and
CSDFT.7,8 Another generalization of the OEP method in the
context of a spin-current DFT �SCDFT� based on a different
choice of densities has also been put forward.11 In the present
work the formalism of Refs. 7 and 8 is used and the corre-
sponding OEP equations can be put in a compact form as

�
k=1

occ

�k
†�r��k�r� + h.c. = 0,

− �B�
k

occ

�k
†�r���k�r� + h.c. = 0,

1

2i
�

k

occ

�k
†�r���k�r� − ���k

†�r���k�r�� + h.c. = 0, �5�

where the so-called orbital shifts17,20 are defined as �k�r�
=� j

unocc� j�r��kj� �k−� j , here the summation runs over the
unoccupied states and

�kj =� d3r��vXC�r���kj�r�� +
1

c
AXC�r�� · jpkj�r��

− BXC�r�� · mkj�r�� − � j
†�r��

	EXC

	�k
†�r��

� , �6�

where �kj�r�=� j
†�r��k�r�, mkj�r�=−�B� j

†�r���k�r�, and
jpkj�r�= 1 � 2i � j

†�r���k�r�− ��� j
†�r���k�r��.

Equation �5� has a structure very similar to the OEP equa-
tions for noncollinear SDFT differing only in the definition
of the matrix �, which now also contains an extra term de-
pending upon the current density and its conjugate field. Due
to their similar structure the CSDFT OEP equations are
solved by generalizing the “residue algorithm,” successfully
applied to solve the noncollinear SDFT equations.19–21 The
only difference in the case of CSDFT is the introduction of
an additional residue coming from the third OEP equation in
Eq. �5�. In the present work we have used the exchange-only
exact-exchange �EXX� functional to solve the OEP equa-
tions. The �gauge invariant� EXX energy functional is the
Fock exchange energy but evaluated with KS spinors

Ex
EXX��i�� � −

1

2 /�
i,j

occ
�i

†�r�� j�r�� j
†�r���i�r��

�r − r��
d3rd3r�.

�7�

In order to keep the numerical analysis as accurate as
possible, in the present work all calculations are performed
using the state-of-the-art full-potential linearized augmented
plane wave �FPLAPW� method,22 implemented within the
EXCITING code.23 The single-electron problem is solved us-
ing an augmented plane wave basis without using any shape
approximation for the effective potential. Likewise, the mag-
netization and current densities and their conjugate fields are
all treated as unconstrained vector fields throughout space.
The deep lying core states �3 Ha below the Fermi level� are
treated as Dirac spinors and valence states as Pauli spinors.
To obtain the Pauli spinor states, the Hamiltonian containing
only the scalar fields is diagonalized in the LAPW basis: this
is the first-variational step. The scalar states thus obtained are
then used as a basis to set up a second-variational Hamil-
tonian with spinor degrees of freedom, which consists of the
first-variational eigenvalues along the diagonal, and the ma-
trix elements obtained from the external and effective vector
fields in Eq. �2�. This is more efficient than simply using
spinor LAPW functions, but care must be taken to ensure
there are a sufficient number of first-variational eigenstates
for convergence of the second-variational problem. Spin-
orbit coupling is also included at this stage.

As shown above for CSDFT, the magnetic field couples
not only to spin but also to the orbital degrees of freedom
through the vector potential. This makes CSDFT specifically
important for magnetic materials and particularly interesting
for their orbital properties. By analogy with SDFT, one
might expect that the introduction of the paramagnetic cur-
rent density gives an improvement in properties such as or-
bital moments and spin-orbit induced band splitting, which
are related to this new basic variable. However, within the
framework of existing functionals it is yet to be established

SHARMA et al. PHYSICAL REVIEW B 76, 100401�R� �2007�

RAPID COMMUNICATIONS

100401-2



conclusively that CSDFT performs better than SDFT for
these properties. The recent development of the OEP method
both for SDFT and CSDFT allows for a direct comparison of
these two approaches for the same XC functional, namely,
EXX.

The orbital moments of spontaneous magnets Fe, Co, and
Ni, in the absence of external magnetic fields and with spin-
orbit coupling included, are presented in Table I. For SDFT,
the LSDA, GGA, and EXX functionals are used, while for
CSDFT the values are obtained using the EXX functional. It
is clear from Table I that there is no difference between the
results obtained using EXX-CSDFT and EXX-SDFT. For-
mally, the jp determined from SDFT does not correspond to
the true paramagnetic current density of the fully interacting
system. Nevertheless, it is standard practice to compute the
orbital magnetic moment L, similar to those listed in Table I,
which is related to jp from the KS orbitals by the relation
L= 1 � 2 
r� jp�r�d3r. The fact the EXX-SDFT and EXX-
CSDFT orbital moments are so close may be viewed as a
post hoc justification of this practice for magnetic metals. It
should also be noted that in comparison to experiments the
EXX results are significantly worse than their LSDA and
GGA counterparts. One reason, of course, is the fact that
LSDA and GGA also include correlation in an approximate
way which is neglected completely within the EXX frame-
work.

In a recent work9 it is shown that the use of the EXX
functional in the framework of SCDFT, improves the spin-
orbit induced splitting of the bands in semiconductors. Un-
fortunately, it is not clear if this improvement is due to the
use of different functionals �going from LSDA to EXX�, or
due to the use of an extra density when going from SDFT to

CSDFT. This has motivated us to compare CSDFT and
SDFT results for this quantity using the same functional in
both cases. We have determined the value of this splitting for
solid Si and Ge and the results are presented in Table II.
While the EXX functional significantly improves the agree-
ment with experimental values, there is almost no change on
going from SDFT to CSDFT. Thus the improvement is solely
due to the orbital based functional. We also note that the
EXX-CSDFT results of Ref. 9 are significantly different
from ours, and in much worse agreement with experiments.
This might be due to the use of pseudopotentials in the pre-
vious work. In this respect it is worth noting that EXX de-
rived KS energy gaps also show significant differences de-
pending on whether an all-electron full-potential or
pseudopotential method is used.25

The paramagnetic current density of Ge for LSDA, GGA,
EXX-SDFT, and EXX-CSDFT is plotted in Fig. 1. Ge is
chosen as an example since the spin-orbit induced splitting is
largest for this system and, unlike in the case of metallic
orbital moments, this quantity does show some difference on
going from SDFT to CSDFT. We immediately notice that
there is no significant qualitative difference between the
LSDA and GGA currents. There are, however, pronounced
differences in the current density between LSDA/GGA and
EXX-�C�SDFT: the current in the latter case being smaller
and more homogeneous than that of the former. This is an
interesting finding since it indicates the tendency of �semi�lo-
cal functionals towards higher values of the paramagnetic
current density. It is worthwhile noting previous EXX-

TABLE I. Orbital magnetic moments for bulk Fe, Co, and Ni in
�B. The experimental data are taken from Ref. 24. The final row
lists the average percentage deviation of the numerical results from
the experimental value.

SDFT CSDFT

Solid Exp. LSDA GGA EXX EXX

Fe 0.08 0.053 0.051 0.034 0.034

Co 0.14 0.069 0.073 0.013 0.013

Ni 0.05 0.038 0.037 0.029 0.029

36.2 36.7 63.4 63.4

TABLE II. Spin-orbit induced splittings for bulk Ge and Si in meV. The experimental data is taken from
Ref. 26. The final row lists the average percentage deviation of numerical results from the experimental
value.

Symmetry
point Exp.

SDFT CSDFT

LSDA GGA EXX EXX �present� EXX �Ref. 9�

Ge 
7v−8v 297 311 296 291.3 289 258.1

Ge 
6c−8c 200 229.7 220 201.3 199 173.3

Si 
25v 44 50 58 42.5 45.5 42.5

9.5 14.0 2.0 2.2 10.5

FIG. 1. �Color� Paramagnetic current density for Ge, in the
�110� plane, calculated using the SDFT and CSDFT. Arrows indi-
cate the direction and information about the magnitude �in atomic
units� is given in the color bar.
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�C�SDFT results for open-shell atoms7 where this effect is
even more pronounced and leads to vanishing currents.

Even though the EXX-SDFT current is considerably
lower in magnitude than that of EXX-CSDFT and also has a
less symmetric structure, the spin-orbit splittings for the two
cases are almost the same. Similar conclusions regarding the
total energies were also drawn for quantum dots in external
magnetic fields studied using EXX8 and other functionals of
the current density.14 From Fig. 1 it is also clear that one of
the major effects of using the OEP method and of using jp as
an extra density is to change the local structure of the para-
magnetic current, which in turn suggests that quantities de-
pending on local properties of the currents, such as chemical
shifts, might exhibit larger differences in the two approaches.
Such calculations27 of chemical shifts, performed using local
functionals, found that for molecules this is not the case. The

effect of the EXX functional on these shifts may be an inter-
esting subject for future investigations.

To summarize, in this work we have presented EXX-
SDFT and CSDFT calculations for solids. The orbital mag-
netic moments of Fe, Co, and Ni and the spin-orbit induced
band splitting of Si and Ge are computed. Our analysis
shows only minor differences between EXX-CSDFT and
SDFT results. The spin-orbit induced band splittings in EXX
calculations are in rather good agreement with experiments,
while the results for the orbital moments are worse than the
LSDA or GGA values. This highlights the importance of a
proper treatment of correlations for the accurate determina-
tion of the orbital moments.

We acknowledge Deutsche Forschungsgemeinschaft and
NoE NANOQUANTA Network �Grant No. NMP4-CT-2004-
50019� for financial support.

*sangeeta.sharma@physik.fu-berlin.de
1 U. von Barth and L. Hedin, J. Phys. C 5, 1629 �1972�.
2 G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 �1987�.
3 G. Vignale and M. Rasolt, Phys. Rev. B 37, 10685 �1988�.
4 P. Skudlarski and G. Vignale, Phys. Rev. B 48, 8547 �1993�.
5 Y. Takada and H. Goto, J. Phys.: Condens. Matter 10, 11315

�1998�.
6 K. Higuchi and M. Higuchi, Phys. Rev. B 74, 195122 �2006�.
7 S. Pittalis, S. Kurth, N. Helbig, and E. K. U. Gross, Phys. Rev. A

74, 062511 �2006�.
8 N. Helbig, S. Kurth, S. Pittalis, E. Räsänen, and E. K. U. Gross,

arXiv:cond-mat/0605599 �unpublished�.
9 S. Rohra, E. Engel, and A. Görling, arXiv:cond-mat/0608505 �un-

published�.
10 T. Heaton-Burgess, P. Ayers, and W. Yang, Phys. Rev. Lett. 98,

036403 �2007�.
11 S. Rohra and A. Görling, Phys. Rev. Lett. 97, 013005 �2006�.
12 K. Bencheikh, J. Phys. A 36, 11929 �2003�.
13 H. Ebert, M. Battocletti, and E. K. U. Gross, Europhys. Lett. 40,

545 �1997�.
14 H. Saarikoski, E. Räsänen, S. Siljamäki, A. Harju, M. J. Puska,

and R. M. Nieminen, Phys. Rev. B 67, 205327 �2003�.
15 R. Sharp and G. Horton, Phys. Rev. 90, 317 �1953�.
16 J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 �1976�.

17 T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in Strong
Coulomb Correlations in Electronic Structure Calculations: Be-
yond Local Density Approximations, edited by V. Anisimov
�Gordon and Breach, Amsterdam, 2000�, p. 203.

18 E. Engel and S. H. Vosko, Phys. Rev. A 47, 2800 �1993�.
19 S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N.

Helbig, S. Pittalis, S. Shallcross, L. Nordström, and E. K. U.
Gross, Phys. Rev. Lett. 98, 196405 �2007�.

20 S. Kümmel and J. P. Perdew, Phys. Rev. Lett. 90, 043004 �2003�.
21 S. Kümmel and J. P. Perdew, Phys. Rev. B 68, 035103 �2003�.
22 D. J. Singh, in Planewaves, Pseudopotentials and the LAPW

Method �Kluwer, Dordrecht, 1994�.
23 J. K. Dewhurst, S. Sharma, and C. Ambrosch-Draxl, http://

exciting.sourceforge.net/
24 M. B. Stearns, in Magnetic Properties of 3d, 4d, and 5d Elements,

Alloys and Compounds, edited by Landolt-Boernstein �Springer,
Berlin, 1987�, Vol. III/19a.

25 S. Sharma, J. K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev.
Lett. 95, 136402 �2005�.

26 O. Madelung, Semiconductors: Data Handbook �Springer-Verlag,
Berlin, 2004�.

27 A. M. Lee, N. C. Handy, and S. M. Colwell, J. Chem. Phys. 103,
10095 �1995�.

SHARMA et al. PHYSICAL REVIEW B 76, 100401�R� �2007�

RAPID COMMUNICATIONS

100401-4


