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The two density-functional methods of calculating excitation energies proposed in the preceding
papet, combined with the recently formulated quasi-local-density approximation for the equiensem-
ble exchange-correlation energy functional [W. Kohn, Phys. Rev. A 34, 737 (1986)], are applied to
the He atom. Although the splittings between nearly degenerate levels with different angular mo-
menta are badly overestimated, in both approaches the averages over angular momentum and spin
of the experimental excitation energies measured from the ionization threshold are reproduced
within a few percent. The computed self-consistent ensemble-averaged densities and the Kohn-
Sham potentials associated with them are discussed.

I. INTRODUCTION

This paper concludes a three-part series dedicated to
fractionally occupied excited states in density-functional
theory. The first paper' in the series, hereafter referred
to as paper I, generalized the Rayleigh-Ritz principle to
ensembles of unequally weighted states. On the basis of
this development, the second paper,2 hereafter referred to
as paper II, extended Theophilow’s equiensemble
density-functional formalism® to ensembles of fractionally
occupied states. Out of that work came two formally ex-
act expressions for the excited-state energies. One of
them—Eq. (61) in paper II, an expression implicit in
Theophilow’s formulation® —relates the excitation ener-
gies to differences between equiensemble energies; we
shall refer to this approach to the calculation of energies
as the equiensemble density method. The other—Eq. (65)
in paper II—relates the excitation energies to differences
between Kohn-Sham* single-particle eigenvalues; we shall
name this alternative approach the fractional occupation
method, since the self-consistent equations that must be
solved involve fractionally occupied orbitals.

In this third paper in the series, we apply both pro-_

cedures to the He atom, to calculate its excitation spec-
trum. For this application (as well as for other applica-
tiorns), approximations are necessary to make practical
the formal expressions underlying the two approaches.
In the equiensemble density method, a suitable approxi-
mation is provided by the recently derived® expressions

for the exchange-correlation energy functional and poten- -

tial. In the fractional density approach, a necessary addi-
tional development will be presented in this paper.

We choose He to try these approximations because of
its well-known simply structured spectrum,® with negligi-
ble spin-orbit splittings. The reduced atomic number
offers an additional advantage, since the relatively small
nuclear potential adds prominence to exchange and
correlation effects. In both approaches, our numerical re-
sults for the binding energies (i.e., the energies reckoned
from the ionization threshold) averaged over angular
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momentum and spin lie within a few percent of the simi-
larly averaged experimental binding energies.® By con-
trast, the typical deviation between the angular-
momentum-resolved calculated and experimental binding
energies is much larger, of the order of 20%; this indi-
cates that our approximate procedures have limited ener-
gy resolution, a shortcoming for which our discussion of
the calculated spectra proposes an explanation.

A second, less serious limitation of our numerical
methods derives from the quasi-local-density approxima-
tion® for the equiensemble exchange-correlation energy
functional, on which both procedures are founded.
Reference 5 assumes that, for sufficiently large excitation
energies, the equiensemble bscomes equivalent to the
thermal ensemble. Unfortunately, for a Coulomb poten-
tial the partition function diverges at any nonzero tem-
perature, so that no thermal ensemble can be construct-
ed, and the analysis of Ref. 5 is inapplicable. Since the
partition function for a confined atom is well defined, we
circumvent this difficulty by enclosing the atomic system
in a spherical box. For small boxes, one would expect
this artificial procedure to distort considerably the atomic
energies. By working with large radii, R =~ 100 a.u., and
monitoring the dependence of the calculated energies on
R, we limit such distortions to less than 19% of the com-
puted binding energies. This gives us confidence in our
admittedly inelegant expedient.

Besides gauging the accuracy of the density-functional
approaches to the calculation of excitation energies, our
application is instrumental in comparing them with the
transition state approach.” Although Slater’s method
bears formal similarities with the fractional occupation
method, the two procedures are not equivalent. One dis-
tinction derives from the different approximations for the
exchange-correlation potential: while Ref. 7 employs the
ground-state exchange potential, the potential in the frac-
tional occupation method derives from the more refined
analysis in Ref. 5. However, even if the ground-state ex-
change potential is substituted for the ensemble potential,
the fractional occupation and the transition state ap-
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proaches remain different, because they prescribe
different occupations for the single-particle levels. To
compute the second excitation energy of the He atom, for
example, the transition-state formula assigns occupations
of 2 to the 1s orbital and } to the 2p orbital; our ap-
proach prescribes occupations of 32, to the 1s orbital, #
to the 2s orbital, and £ to the 2p orbital. Generally, one
method can not be derlved from the other, the fractional
occupation approach providing an alternative to, and not
a refinement of the transition-state prescription. To com-
pare them, we have to examine the accuracy of the re-
sults they produce.

On the average, compared with the experimental spec-
tium, the results of both the fractional occupation and
the equiensemble approaches are significantly more accu-
rate than those of the transition-state approach. The
latter systematically underestimates the binding energies
by =~40%. This discrepancy reflects a conceptual incon-
sistency, the unjustified extrapolation of the ground-state
exchange potential to excited states. As one would ex-
pect, the errors in the density-functional -procedures,
deriving from the more appropriate approximation in
Ref. 5, are smaller.

This report is divided in four sections. In an attempt
to maKe it self-contained, we recapitulate in Sec. II the
most important resulis of paper II and of Ref. 5. That
section also introduces the additional approximation
necessary to make operative the fractional density ap-
proach and outlines the numerical procedures involved in
the equiensemble density, the fractional density and the
Slater transition-state approaches. The numerical results
are discussed in Sec. III, and Sec. IV summarizes our
conclusions. Finally, the Appendix discusses the compu-
tation of the energy, entropy, and chemical potential of a
homogeneous electron gas at finite temperatures.®—!!
The first two thermodynamxcal functions enter the quasi-
local-density  approximation® for the exchange-
correlation energy functional, while the third defines the
exchange-correlation potential.ﬁs

II. COMPUTATIONAL METHODS

This section describes the two alternative procedures
determining excitation energies in density-functional
theory and reviews Slater’s transition-state approach.
We emphasize the practical aspects of the procedures; the
basic formulations, detailed in paper II, merit only curso-
ry recapitulation. For clarity, we discuss the three
methods separately, first the equiensemble density ap-
proach, then the fractional occupation approach, and
finally the transition-state approach.

A, The equiensemble density approach

1. Basic equations

The central quantity in the equiensemble formalism?3
is the equiensemble density p*(r), defined by

M
Pr=22 3 (B |5 | 90 W
m=1
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where p(r) denotes the density operator and the |, )
(1 <m < M) are the lowest M eigenstates of the interact-
ing Hamiltonian. The latter is of the form
A= f'+0 +f}, where T is the kinetic energy, U the
Coulomb interaction, and P = f p(riv(r)d3r the external
potenual The following self-consistent equations deter-
mine p™(r):

—Tvchj(r)-i-v,[pM](r)cpj(r‘)=8jq0j(r) ) (2a)

v, [pMI(r)= (r)+ f —P—rd3r'+u;‘g[pM](r), (2b)

and

M<r>—~— s S Fop L0502 (20)

m=1 j

Here, the @;(r) and ¢; are the single-particle wave func-
tions and elgenvalues of a noninteracting gas subject to
the effective potential v,[p™](r), Eq. (2b). Each f,, J
denotes the occupation (0 or 1) of the Jth orbital in the
Slater determinant |¢,, ), where |¢),..., |, ) are
the lowest M noninteracting N-particle states correspond-
ing to the single-partlcle equatlon (2a). The exchange-
correlation potential v¥[p*](r) is the functional deriva-
tive

v MIpMUry=8EMX[p¥]/6pM(r) , 3)

the exchange-correlation energy functional EX[p¥] be-
ing formally defined by

E¥[pM]=— >: (U, | T+ 0| ¢,)

___f fuM(") M(’ d3 d3r

—g'n);l(qu | ?|¢m> . @

The |,,) being of course unknown, an approximate
scheme to determine E¥[p™] is called for. On the basis
of the local-density approximation for the thermal
exchange-correlation energy functional E% [p] and of the
equivalence (valid for M — «) between the canonical en-
semble and the equiensemble, one such scheme has been
recently derived.> Essential ingredients of this construc-
tion are (i) the equiensembles of N interacting and of N
noninteracting electrons, both with multiplicity M and
entropy §=k InM, where k is the Boltzmann constant,
(ii) a canonical ensemble of N interacting electrons, with
density p(r)=p™(r), at temperature 6 chosen to make its
entropy S(8) equal to k InM, and (iii) a canonical ensem-
ble of N noninteracting electrons, with density
p(r)=p™(r), at temperature 6, chosen to make its entro-
py S,(8,) equal to k InM. Generally different, the two
temperatures are approximately determined by the condi-
tions

[ o%lp™I(r)dr =k InM (5)

and
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[ ol tp™(ndr =k InM . (6)

Here and henceforth, for given r, the notatlon Sflpl(r) in-
dicates the guantity f (in this case o, the entropy per
unit volume of an interacting gas at temperature 8, and
o-f‘, the entropy per unit volume of a noninteracting gas
at temperature 8) calculated for a homogeneous system
of density p equal to the local density p(7). The assumed
equivalence between the canonical ensemble and the
equiensemble leads to the following approximation for
the exchange-correlation energy functional:

EM[pM [ (e, [pM)n) +tIp™1r)

—-tse‘[pM](r)}d3r , 9

where e’ is the exchange-correlation energy per unit

volume of a homogerieous interacting gas and tf the ki-
netic energy per unit volume of a homogeneous nonin-
teracting gas, both at temperature 6.

Combined with Ec. (7), Eq. (3) yields the exchange-
correlation potential:

ML oMY(r)=p [ p™1(r) —p [pM1r) C®

where u® is the chemical potential of a homogeneous in-
teracting gas at temperature 9, and u that of a homo-
geneous noninteracting gas at temperature 0.

To solve the self-consistent Egs. (2) with the exchange-
correlation potential in Eq. (8), we need expressions for
the temperature-dependent functions of the density on
the right-hand side of Eq. (7) and on the left-hand side of
Eqgs. (5) and (6). Approximate forms, taken from Refs.
8-11, are discussed in the Appendix.

Once the equiensemble density p™(r) is found, the fol-
lowing expression determines the equiensemble energy
&(M), equal to the arithmetic average between the lowest

M eigenvalues, E,E,, ..., Ey, of H:
M, ;M '
(S"(M)—-— 2 Efnij i - f f (r) (|r )d3 d’
— [pMewM(d>r + EX¥[pM] . ©)

From the &(M), the eigenvalues E,, can be easily com-

puted. For degenerate spectra, we have shown in paper
II that

EI=(M1/gI)[6(MI)-—5(M1_1)]+6’(M1_1) I>1),
(10)

where E; and g; dencte the energy and the degeneracy of
the Ith multiplet, respectively, and

I
i=1

is the multiplicity of the ensemble constituted by the mul-
tiplets i =1,2, ...,

2. Numerical procedure

In order to calculate an excitation spectrum, its multi-
plet structure, i.e., the degeneracies of the levels and their
relative order, must be known. Once the structure is
found, e.g., by inspection of the experimental spectrum,
the following sixfold procedure determines the excited
energies.

(a) For a given multiplet, Eq. (11) determines M =M.

(b) The ground-state self-consistent dens1ty pM=(r)
provides an initial approximation for p M(r). For
I > 2, the self-consistent density p ' ~!(r) provides an ini-
tial approximation for pM— '(r). This approximation
substituted for p™(r) in Eqs. (5) and (6), initial approxi-
mations for @ and 6, are found.

{c) Substituted in Eq. (8), the approximate tempera-
tures yield a functional form for the exchange-correlation
potential. This form fixed, (i.e.,, 8 and 9, kept fixed), the
self-consistent Eqs. (2) are solved iteratively, a step simi-
lar to the self-consistent solution of the ground-state
Kohn-Sham equations.

(d) The resulting density substituted for p™(r) in Eq.

(6), improved approximations ' and 6. for the tempera-

tures of the interacting and of the noninteracting systems
are found.

(e) If 0’ agrees with 6 and 6 agrees with 8, within, e.g.,
0.1%, overall self-consistency has been achieved. If not,
@' and 0, are substituted for 6 and 6, respectively, and
steps (c)—(e) are repeated.

(f) Finally, the self-consistent density p™(r) and the
self-consistent temperatures 8 and @; are substituted in
Eq. (7) to determine the exchange-correlation energy.
The equiensemble energies, Eq. (9), can then be found and
Eq. {10) determines the excited-state energies.

In concept, this sequence is only slightly more ela-
borate than the solution of the ground-state Kohn-Sham
equations. Nonetheless, when applied to a Coulomb po-
tential v(r)=—Z /r, it encorpasses an inconspicuous
difficulty requiring discussion. As pointed out in the in-
troduction, this difficulty stems from assuming that, in
the limit M — «, the equiensenible becomes equivalent to
the canonical ensemble. For a Coulomb potential, as for
any potential with a continuous spectrum, the canonical
ensemble  is ill-defined, since the partition function
diverges at any nonzero temperature. In practice, this re-
sults in logarithmically divergent exchange-correlation
potentials in the limit of low densities, i.e.,

Jim vy [pM](r)— 0
pMirn—o
so that step (c) cannot be executed.

To explain how this divergence arises, we refer to the
expressions in the Appendix for the chemical potentials
on the right-hand side of Eq. (8). In the classical regime,
0,0, >> 0y, where 8, =(3m%0)*"> /2k is the Fermi temper-
ature, we have

p(p) =pl(p)=01np . (12)
; Tow densities

v M pMY(r)=(6—6,) Inp™(r) . (13),

According to Eq. (8), then, a
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Since, as shown in Sec. II1, the interacting temperature
0 exceeds the noninteracting temperature 6, the
exchange-correlation potential becomes strongly attrac-
tive in the low-density tail of the charge distribution,
creating a diffusive force that, in an infinite system, will
drain all but an insignificant fraction of the charge away
from the nucleus. In the canonical ensemble, this insta-
bility against ionization is readily understood, since at
any finite temperature the thermal average encompasses
ionized eigenstates of the atomic Hamiltonian. In the
equiensemble, however, the effect is totally unphysical,
because the average in Eq. (1) comprises only bound
eigenstates. )

To avoid this artifact of the assumed equivalence be-
tween the thermal ensemble and the equiensemble, we en-
close the atomic system in a spherical box of radius R,
i.e., we define the potential v () in Eq. (2b) as

—Z/r forr<R

v(N=1_ for r>R.

By making their wave functions vanish at r=R, we en-
sure that both the interacting and the noninteracting sys-
tems have partition functions at all temperatures. The
energies of the enclosed system will, naturally, depend on
R; nevertheless, we find that, in the range 18
a.u. <R <140 a.u., the equiensemble energies vary typi-
cally by less than 0.1%, implying changes of less than 1%
in the calculated binding energies. This indicates that,
for R in this range, the differences between the eigenval-
ues of the confined and of the free Hamiltonian are negli-
gible. Section III, which compares numerical results for
the enclosed atom with experimental data for the free
atom, dwells further on this point. Here, we consider
another aspect of the seif-consistent cycle.

Our choice of the multiplicities, Eq. (11), ensures that,
averaged over full multiplets [see Eq. (1)], the equiensem-
ble densities p™(r) be spherically symmetric. For the ex-
act exchange-correlation potential, the solution of the
Kohn-Sham equations must therefore make the right-
hand side of Eq. (2c) spherically symmetric. For approxi-
mate forms of v*(p), however, a lopsided density may re-
sults from that equation, as the following discussion
shows.

. According to the definition of the occupation numbers
fmi on the right-hand side of Eq. (2¢), the Kohn-Sham
many-particle levels are filled in increasing energy order.
If the ordering of the Kohn-Sham multiplets fails to
maich the ordering of the eigenvalues of the Hamiltoni-
an, for some M the highest multiplet in the Kohn-Sham
equiensembles will be partially filled. The Kohn-Sham
Hamiltonian being an auxiliary entity devoid of physical
meaning, such discrepancies between the interacting and
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noninteracting systems cannot be ruled out (even in the
exact formalism). For an approximate exchange-
correlation potential, they in principle constitute a prob-
lem, for a partially filled multiplet generally makes the
right-hand side of Eq. (2c) asymmetric. In practice, how-
ever, one casily surmounts this dlfﬁculty by computng
p™(r) as the spherical average of M _, 3 fmi @)%
An example will be discussed in Sec. III.

B. The fractional occupation approach

1. Basic equations

Paper 11, a generalization of the equiensemble formal-
ism discussed in Sec. IT A, develops a density-functional
theory for unequally weighted ensemble densities. For
given I (I=1,2,...) and given w in the range
O<w <1/M,;, where M, is determined by Eq. (11), the
density is defined by

1—wg, I-1 &
—2L s 3 0k |pn)| k)
I—1

i=1 k=1

pLir=

&r
+w S (L |pr | LEY, (14)
k=1

where |[i,k) is the kth component of the g;-degenerate
ith multiplet in the spectrum of the interacting Hamil-
tonian A.

To determine the pl(r) one must solve the self-
consistent equations

— 1V, (r)+ 0oy, W (r)=5,(r) , (15a)
I
w7
5, [pL =+ [ Iir:r—Td3r'+v§c[w;p{u](r>,
| (15b)
and
MI &
pw( )-— M z Efmj]¢1(r)|2
I—
MI
w3 Sfwilein]? (15¢)
m=M,—g+1 j
in a notation analogous to that of Egs. (2). The

exchange-correlation potential on the right-hand side of
Eq. (15b) is the functional derivative

v lw;pl(r=8EL [w;p]/8p(r) ,

the exchange-correlation energy functional being formal-
ly defined by the relation

(16)

(17)

EL[w;pl]= ng’ 'S' S ik | P40 ik tw z (Lk|P+0|1k)
I—1 =1 k=1
1— wgl M’
e AT S AL T R

m=M,—gI+I

f f pw(r)pw(r) 3rd3r, .



The continuous variable w making this approach more
flexible than the equiensemble formalism, two expressions
ultimately relating the excitation energies of the interact-
. ing system, measured from the ground state energy,"? to
the single-particle eigenvalues of the noninteracting
Hamiltonian were derived in paper II:

= = 1 dé&iw) -1 1 d&iw)
E—E=—22"1 + > —— ,
I t gI dw w=w; i§2 Mi dw w=10.

(18)

where w; denotes an arbitrary real number in the interval
O<w; <1/M;, and the derivatives of the ensemble-
averaged energies 6X(w) are given by

N—l4M N—1+M
déI(w)_ I 8r I-t
w ., > YT 2 g

J=N+M, -1 j=N

AEL [w;p]
| BELLwip]

3w - (19)

p=pl,

These expressions are exact, but for practical applica-
tions, an approximation for the partial derivative on the
right-hand side of Eq. (19) is necessary. This constitutes
the subject of Sec. I B 2.

2. Approximate expressions for vi fw;p]
and 3E L {w;pl/dw

The quasx-local-densuy approximations for E¥[p™]
and for v derived in Ref. 5 apply only to equlensembles
For this reason, as discussed in paper II, our definition of
the ensemble weights entering Eq. (14) was designed to
interpolate between two sets of equiensemble weights: for
given M, at w =0, the weights are all equal to 1/M;_,,
corresponding to the equiensemble with multiplicity
M;_, and, at w=1/M,, they are equal to 1/M,, corre-
sponding to the equiensemble with multiplicity M;. We
now assume that the exchange-correlation energy func-
tional and the exchange-correlation potential are smooth
functions of the parameter w; from our definition of the
ensemble weights, simple approximations for the
exchange-correlation potential and for the partial deriva-
tive of the exchange-correlation energy with respect to
the parameter w then follow. Specifically, we define
wy,=4M; and expand vy [w;p;, | and Eglwipy, ]
in Taylor series around w =w, ,,. We then find that

) My_
viclwi/2ipn, , Jri=1{v " P, , 1P
Mpc 1
+ud oL, 1)
+0(1/M}?) (20)

and
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3y [w;p] M,
—ars r - — I
ow p=f’z[vl/2 _}llI{Exc [pwl/Z]
—E- '[P, , 1}
+0(1/M,3) . 21

Notice that, as a result of the choice w=w, ,,, for large
M, the corrections on the right-hand sides are small.
These corrections neglected, Eqs. (20) and (21) close the
set of equations in Sec. II B 1, thus defining the procedure
summarized in the following section.

3. Numerical procedure

Substituted in Eq. (20), the approximation (8) for the
exchange-correlation potential associates four—and not
two, as in the equiensemble density approach—
temperatures (M), 8,(M;) [determined by substituting
M, for M in Eqgs. (5) and (6), respectively], 8(M;_,), and
0,(M;_,) [determined by substituting M;_, for M in
Egs. (5) and (6), respectively] with the density pam.
Different, therefore, from the procedure in Sec. II A 2,
the cycle solving Eqgs. (15) deserves separate enumeration.

(a) Given I, Eq. (11) determines M; and M, _,.

(b) The ground-state self-con',lstent density gives an ini-
tial approximation for pwl =2(r). Likewise, for I >2, the

self-consistent solution for ,ow‘ 1(r) provides an approxi-

mation for pw (). As indicar, ed above, Egs. (5) and (6)

then determlne the initial approximations for 6(M;),

6,(My), 8(M; _,), and 6,(M;_,). ‘

(c} The approximate temperatures are substituted in
M,

Eq. (8) to provide approximations for v, [pw ](r) and

[pwl/2 1(r). Substituted in Eq. (20), these in turn
prov1de an approximate functional form for the fractional
occupation exchange-correlation potential. With this
form fixed [ie., with 6(M;), 6,(M;), 8(M,_,), and
6,(M;_,) fixed] the self-consistent Egs. (15) are solved
iteratively. ‘

(d) Substituted in Egs. (5) and (6), the resulting density
yields improved approximations 6'(M;), 6.(M,),
6'(M;_,), and 6;(M; _,) for the four temperatures.

(e) If the four primed temperatures agree with the four
unprimed ones [e.g., @'(M;) agrees with 8(M;)] within
0.1%, overall self-consistency has been achieved. If not,
the new temperatures are substituted for the old ones
[e.g., 6'(ML;) is subsituted for O(M;)], and steps (c)—(e)
are repeated.

(D) Finally, the self-consistent. density pw ,(r) and the
self-consistent temperatures (M) and 6, (M 1) are substi-
tuted in Eq. (7) to determine E,' [pwm]. Likewise
pwl (r) and the self-consistent temperatures G(M;_,)
and 6,(M; ;) are inserted in Eq. (7) to determine

M
Excl_l[pﬂl]ﬂ]‘ Equation (21) then yields 9E;,[w;p]/
, and the derivative d G’I(w)/dw, needed to

for v

d P"’l/z
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compute the excitation energies in Eq. (18), is found from
Eq. (19).

Since the potential in Eq. (20) derives from the quasi-
local-density approximation in Ref. 5, the practical appli-
cation of this cycle to a Coulomb potential runs into the
difficulty mentioned in Sec. IT A, associated with the loga-
rithmic divergence of the exchange-correlation potential
at low densities. To avoid this problem, again we must
confine our atomic system. Already described in Sec.
II A 2, this expedient will not be discussed here.

C. The transition-state approach

In Sec. III, we shall compare our numerical results
with those of Slater’s procedure.” This end in mind, we
enumerate here the basic steps constituting that ap-
proach, referring the reader to Ref. 7 for a more
comprehensive discussion of the approximations involved
in the method. Basic to the procedure are self-consistent
equations analogous to Egs. (2) or (15):

— V23 + v S pS1(ref(r =elpi(r) , (22a)
St .1
i =v(r+ [ —!%d%#vxlps](r) ,  (22b)
and ‘
N o )
Fn=|3 1efn 1+ 3 fF1efn 12| [z, @2
j=1 j=1

where v, [p] denotes the ground-state exchange potential,

and f jS is the occupation (0 or 1) of the orbital j in the ex-

cited state being considered. The occupation of the orbit-
al <pf(r) lies therefore halfway between the occupations of
the jth orbitals in the ground state and in the excited
state.

Once Egs. (22) are solved, the following approximate
expression relates the excited-state energy ES to the
single-particle eigenvalues 8151
w N ’

¢ -
ES—E, = zlfjs ;?_ 21 g, 23)
j= j=

thus determining the excitation energy reckoned from the
ground-state energy E .

The ground-state potential on the right-hand side of
Eq. (22b) greatly simplifies the solution of the self-
consistent equations: in contrast with Egs. (2) and
(5)—(8), or (15)—(16), Egs. (22) involve no temperature,
hence bypassing steps (d) and (e) in the cycles discussed in
Sec. IIA2 and IIB3. Moreover, the ground-state ex-
change potential vanishes in the limit of low densities, so
that the atomic system need not be confined.

The procedure is thus convenient for practical applica-
tions. As illustrated by our numerical results, it is also
reasonably accurate. Nevertheless, in spite of these at-
tractive qualifications, Egs. (22) and (23), derived’ by ap-
plying the ground state Hartree-Fock-Slater formal-
ism™1? to excited states, lack the logical foundation un-
derlying the formalism in Secs. II A and II B. A discus-
sion of those equations in the framework of density-
functional theory is therefore instructive, and we shall
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next show that, for a highly degenerate first excited state,
they follow from a simple approximation in the fractional
occupation approach.

We consider the ensemble constituted by the ground
state and the first excited multiplet of the Hamiltonian A.
We assume that the ground state is nondegenerate and
that the first excited state has degeneracy g. The ensem-
ble multiplicity is then M =14g. For w=w,,=1M,
Eq. (15c) becomes

N

I1=2,y_1+8/2 (r) 12
Pu Ar)= lig j§1|¢](r)|

. 1/2 g+1 ~ 2
D A 100N Il
+1+gmz=2§fmjl‘pjrl

Furthermore, since
5 1, 1<j<N-1
"8 —tamy J2N

we find

N
pl=2n=1F872 5 |5.(n2

I+g 2

g/2
T ltg

N—1

> W’j(’)P

j=1

1 &1 2
+E 2 l@N_Hm(r)l . (24)
m=2

In the limit g — <o, this equation becomes equivalent to
Eq. (22¢) (provided an average over the multiplet is intro-
duced in Slater’s method; in practice, this is in fact an in-
dispensable complement of the transition-state approach,
necessary to preserve the symmetry of the exchange po-
tential). If the ground-state exchange potential v, [p1(r)
is substituted for vI2[w;p](r), the entire set of Egs. (15)
becomes equivalent to Egs. (22). Likewise, if the ground-
state exchange energy functional is substituted for
El=?[w;p], so that 3EL~*[w;p]/dw =0, Eq. (18), com-
bined with Eq. (19), yields E,—E =gy, —¢y,
equivalent to Eq. 23). ‘

For a highly degenerate first excited state, therefore,
the approximation EI=%[w;p]l= f e, [pl(r)d?®r, where
¢.[p] denotes the ground-state exchange energy per unit
volume of a homogeneous system with density p, reduces

" the fractional occupation approach to the transition-state

approach. Since excited states are often highly degener-
ate, since the exchange-correlation potentials for the
ground state and for the lowest excited multiplets should
be approximately equal, since correlation energies are
normally much smaller than the exchange energies, and
since the derivative 3EI=2[w;p]/ Bw is generally
small-—a point discussed in Sec. III—Slater’s method
should generally yield accurate first excitation energies.
This is in line with our numerical results for the fourfold
degenerate first excited state of He. In this case,
3E!=*[w;p]/dw amounting to less than 2% of E,—E|,
the excitation energy derived from Eq. (23) is only 5%
larger than the experimental value.
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This argument provides an alternative derivation of the
transition-state formulas, one that is firmly grounded on
the exact developments in paper II. If generally valid, it
would provide a means to improve systematically Slater’s
prescription. Correlation and more accurate descriptions
of the exchange-correlation potential would be easily ap-
pended to the method. Unfortunately, however, our
reasoning applies only to highly degenerate first excited
states; it cannot be extended to I > 2. For, since the en-
semble average on the right-hand side of Eq. (15¢) in-
volves all eigenstates with i=1,2, ..., I, while the right-
hand side of Eq. (22c) involves only i=1 and i =1, the
densities pL>%(r) and p(r) are irreconcilably different, In
general, as pointed out in the Introduction, the transition
state approach is not a special case of, but an alternative
to the formulation described in Sec. II B 1.

IH. NUMERICAL RESULTS

A. Spectra s

The very small spin-orbit sphttlngs in the excitation
spectrum®14 of He are often neglected,’ so that the eigen-
states are classified as para (spin-0) or ortho (spin-1)
states. In a cruder approximation, in this work we disre-
gard the splittings associated with the electronic spin and
consider only the average between the para and ortho en-
ergies corresponding to each state, with weights one and
three, respectively. Depicted as binding energies, i.e.,
subtracted from the ionization threshold E Pt
= —1.807 Ry, the lowest ten such averages are displayed
as bold solid lines in Fig. 1. In a one-particle picture,
each of these eigenslates comprises one electron in the
hydrogenic 1s state and the other electron in a hydrogen-
ic nl state. This defines the labeling system in the figure,
each level being labeled by the principal quantum number
n and the total angular momentum L =/.

Also depicted in Fig. 1 are the lowest ten excited levels,
calculated by the equiensemble density and the fractional
occupation approach, represented by the solid and the
dashed lines, respectively. In the equiensemble method,
Eq. (10) yields the eigenvalues of . To determine the
binding energies E} displayed in the figure, we had to cal-
culate the ground-state energy E; of He*. To this end,
we considered the ls orbital with occupation f7:=!=1,
solved Egs. (2) for M =1, and inserted the resulting den-
sity in Eq. (9). This gave E{ = —3.725 Ry. The binding
energies were then easily obtalned: E} =E,—

In the fractional occupation approach in contrast, Eq.
(18) determines the excitation energies measured from a
reference multiplet!? I,. In Fig. 1, we chose the highest
deplcted multiplet, I==11, as reference, the bmdlng ener-
gies were therefore computed as Ef =E;—E, +E?}, the
last term denoting the experlmental binding energy of the
eleventh multiplet: Ef, =—0.045 Ry.

The two calculated spectra are in excellent mutual
agreement: each excitation energy in the fractional den-
sity approach differs by less than 1% from' the corre-
sponding energy in the equiensemble density approach.
This shows that, as expected, neglecting the terms of
0l1/M?) and O(I/A{}) on the right-hand sides of Egs.
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BINDING ENERGY (Ry)
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==== SLATER

ANGULAR MOMENTUM

FIG. 1. Energies compuied in the equiensemble density (solid
lines), fractional occupation (dashed lines), and transition state
(bold dashed lines) approaches, compared with the ten lowest
excited levels in the experimental spectrum of He (bold solid
lines). Averaged over spin, classified by total electronic angular
momentum, the levels associated with the same principal quan-
tum number n, defined in the text, are joined. As explained in
the text, all energies are reckoned {rom the ionization threshold.
The transition-state energies are shown only for =2 and 3, to
avoid overcrowding. On the right vertical axis, the equiensem-
ble density and the fractional occupation energies averaged over
spin and angular momentum are compared with the averaged
experimental energies.

(20) and (21), respectively, constitutes a satisfactory ap-
proximation. The two methocls produce comparably ac-
curate results.

Inferior, yet still satisfactory, is the agreement between
the numerical and the experimental spectra. The calcu-
lated binding energies are typically 20% off the measured
binding energies. The deviations follow a pattern. For
the smallest angular momenta associated with éach prin-
cipal quantum number # , the binding energies are over-
estimated; for the largest angular momenta, they are un-
derestimated. We nevertheless observe that remarkably
accurate results are obtained for the average energies of
the almost degenerate states corresponding to
n=2,3,4,.... To show this, for each # the right-hand
vertical axis in Fig. 1 compares Ef= S?Zi[(2L
+1)Ef; 1/n?, the averages over angular momentum and
spin of the energies computed in the equiensemble densi-
ty and in the fractional occupation approaches, with the
corresponding experimental average. In all cases, the
agreement is excellent.

With hindsight, we might rationalize this finding by
three qualitative considerations. Formally speaking, all
deviations in the equiensemble density approach (and a
large component of the deviations in the fractional densi-
ty approach) are due to errors in the equiensemble
exchange-correlation energy functional, Ex[p(r)]. (1)
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These errors, SEM[p(r)], will include fluctuations with
M, for every increment M —M+1. The fractional
significance of these fluctuations is then decreased when
average energies for a group of states between M and
M +AM(AM > 1) are calculated. (2) The approximate
equivalence of equi- and thermal ensembles is poorly
satisfied when energy differences between two successive
levels are small compared to k0 (or k6;). One therefore
expects a good representation only for such values of M
that nearly degenerate multiplets are either totally in-
cluded or totally omitted. (3) Since we make a local-
density approximation, we expect best results for those
equiensembles whose electronic structure best resembles
that of a uniform thermal ensemble. We suggest that all
these considerations may, in different degrees, help ex-~
plain the numerically observed accuracy of the average
energies for each value of the principal quantum number.

Even when the significantly less accurate angular-
momentum-resolved energies are considered, the density
functional results for the excitation spectrum compare
favorably with the results of Slater’s transition-state
prescription. In Fig. 1, the latter are shown as bold
dashed lines, obtained by subtracting the difference
ES—E|, Eq. (23), from the experimental ionization ener-
gy AE=E{ —E;=1.807 Ry. In contrast with the slant-
ed pattern displayed by the other two computed spectra
in Fig. 1, the bold dashed lines lie systematically above
the bold solid lines. The average deviation of the calcu-
lated energies from the experimental values is approxi-
mately 40%, a figure comparable to the largest deviations

(i.e., the deviations found in the computation of the nS
levels), but considerably larger than the average devia-
tions in the equiensemble density and the fractional occu-
pation approaches. Generally speaking, therefore, the
methods in Secs. II A and II B constitute improvements
over the transition-state approach.

The two highest energies in Fig. 1 constitute the only
example found in this work of mismatch between the in-
teracting and the noninteracting eigenvalues, a possibility
discussed in general terms at the end of Sec. IIA 2. In
solving the self-consistent Egs. (2), we have found that
the 58 noninteracting level lies below the 4F noninteract-
ing level, in disagreement with the experimentally deter--
mined ordering of the interacting energies. Thus, while
the interacting I =10 equiensemble comprises the 1S, 25,
2P, 38, 3P, 3D, 4S, 4P, 4D, and 4F multiplets, the nonin-
teracting I =10 equiensemble comprises the 1S, 25, 2P,
3S, 3P, 3D, 45, 4P, 4D, and 55 multiplets and 24 com-
ponents of the 4F multiplet. Both ensembles have 117
levels, but the partially filled 4F multiplet in the Kohn-
Sham ensemble makes their symmetries different. As
prescribed in Sec. II A 2, to avoid an asymmetrical densi-
ty we have averaged the right-hand side of Eq. (2¢) over
all angular orientations of the vector r and have other-
wise followed the cycle (a)—(e) to compute the equiensem-
ble energy 6(117), needed to determine both the 4F and
the 55 eigenvalues [see Eq. (18)]. All other noninteract-
ing equiensembles comprise only full multiplets, no
spherical averaging being necessary.

Table I collects other data extracted from our numeri-

TABLE 1. Equiensemble energies 6(M;) (I=1,2,...,11), computed in the equiensemble density

approach, and differences between

equiensemble

energies AG(M;)=6(M;)—6(M;_,)

(I=2,3,...,11), computed in the fractional occupation approach, compared with the corresponding

‘experimental values. All energies are in rydbergs. For comparison, below each computed energy the
exchange-only approximation to the same quantity is shown within parentheses. For each ensemble,
the multiplicity M; and the highest multiplet are also listed.

I State M; &(M;) E*P( M) AG(M;) AE=P (M)
1 15 1 —5.672 —5.807
(—5.447)
2 28 5 —4.452 —4.630 1.2398 1.1770
(—4.256) (1.1896)
3 2P 17 —4.111 —4.370 0.3458 0.2601
(—3.919) (0.3380)
4 3s 21 —4.070 —4.325 0.0406 0.0450
(—3.896) (0.0313)
5 KY o 33 —3.990 —4.249 0.0829 0.0765
(—3.832) (0.0649)
6 3D 53 —3.925 —4.197 0.0670 0.0518
(—3.772) (0.0597)
7 45 57 —3.917 —4.188 0.0082 0.0088
(—3.765) {0.0075)
8 4P 69 —3.896 —4.166 0.0200 0.0215
(—3.747) (0.0181)
9 4D 89 —3.871 —4.143 0.0243 0.0233
) (—3.726) (0.0209)
10 4F 117 —3.848 —4.124 0.0231 0.0193
(—3.706) (0.0198)
11 58 121 —3.845 —4.121 0.0025 0.0026
(—3.704)

(0.0022)




cal-calculations. Of special interest are the equiensemble
energies and the differences between equiensemble ener-
gies, computed in the equiensemble density and the frac-
tional occupation approaches, respectively. The equien-
semble energies are all larger than the equiensemble aver-
ages of the experimental energies, also shown in the table.
Since this applies, in par ticular, to the ground-state ener-
gy, E;=6(M=1), it is instructive to recall a few con-
clusions drawn from studies of the ground state.!> 16

The ground state energies of He and Het have been
calculated in both the local-density approximation'
(LDA) and the Jlocal-spin-density approximation'
(LSDA) for the exchange-correlation energy functional.
The computed energies lie above the experimental values.
More recently,!” it has been recognized that, to a large
extent, these discrepancies are due to the self-interactions
in the classical Coulomb energy

ffﬂp(")d:; a3 .

16

As Eq. (4) suggests, in an exact formulation, symmetric
terms in the exchange-correlation energy functional
would cancel out these spurious interactions. In the
LDA and in the LSDA, however, the self-interactions are
only partially canceled by the approximate exchange-

correlation functional; this makes the ground-state ener-—

gies too large. In particular, for the singlet ground state
of He, the two approximations are identical, yielding'®
EIPA=FISPA — __5 67 Ry> E{®'=_5.81 Ry. For the

spin-degenerate He™ ground state, on the other hand, the

results of the LDA and of the LSDA are substantially
different. The cancellation of the self-interactions being
much more complete in the latter than in the former, the
LSDA estimate!® (E#1SPA = _3,92 Ry) is much closer
to the experimental energy (E {7 “P* = —4.00 Ry) than the
LDA estimate'® (E ;P4 = —3.72 Ry).

Consider now the equiensemble energies for M, >1.
While in the ground siate two electrons with opposite
spin share the 1s orbital, in the excited state they need
not have opposite spins and they occupy different orbit-
als. This suggests that, for M, > 1, a spin-polarized gen-
eralization of the methods in Secs. IT A and II B is neces-
sary to compute accurately the 6(M;). By ignoring spin,
our treatment is bound to produce relatively large errors.
In particular, for large M, we expect it to yield equien-
semble energies approaching E P4, the LDA estimate
for the He® ground state, and not E}LSPA  This is
ratified by Table 1.

In light of our discussion of the ground state, we ex-
pect that, even if a spin-density calculation were carried
out, the residual self-interactions would make the equien-
semble energies significantly larger than the experimental
averages. As in the ground-state calculations, we expect
that, contributing approximately equally to the atom and
to the ion, these residual interactions partially cancel
each other and become relatively unimportant in the
binding energies.

At present, unforiunately, neither a spin-density gen-
eralization of the quas1—loca1-dens1ty approximation of
Ref. 5 nor accurate expressions for the thermodynamical
functions of a spin-polarized homogeneous electron gas
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are available, so that no spin-density analogue of Table I
can be constructed. To compensate for this shortcoming,
we have subtracted the excited state energies from
E{PA (and not from E{ P2, as we would have done in
a spm—dens1ty calculation) to produce the binding ener-
gies in Fig. 1. The self-interactions in the ionized state
canceling those in the excited states, this procedure im-
proves substantially the numerical results; nonetheless, it
may be a poor substitute for the spin-density approach.
In particular, inspection of the experimental spectrum
shows that, while the para configuration of the nS states
is nearly degenerate with the other #L (L > 1) levels, the
ortho configuration has consicderably lower energy. In a
spin-density formalism, therefore, one should be able to
resolve the splitting between the para and the ortho nS
levels, which would considerably improve Fig. 1.

Table I also shows that the differences A&(M;) be-
tween successive equiensemble energies, computed in the
fractional occupation approach, are on the average
within 20% of the A&(M;) calculated from experimental
excitation energies. The absolute deviations from the ex-
penmental values thus diminish as M; grows.. The

~derivation® of Eq. (7), which assumes that the equiensem-

bles and thermal ensembles are equivalent, an assumption
justified only for large M, explains this trend of the nu-
merical results and suggests that, to minimize the error in
computing the excitation encrgies, one measure them
from the highest energy considered in the computation,
ie., from E;_,,. Thisis what we have done in Fig. 1.
Equiensemble energies and differences between equien-
semble energies, computed in the exchange-only approxi-
mation to the exchange-correlation energy functional are
shown within parentheses in Table I. Although the
G(M;) calculated in this fashion deviate considerably
more from the experimental equiensemble energies than
the &(M;) calculated with correlation, the ground-state
energy for He' in the exchange-only approximation
(Ei =—3.61 Ry) is also farther from the experimental
energy than the E { calculated with correlation. As a re-
sult, reckoned from the ionization threshold, the equien-
semble energies computed in the exchange-only and in
the exchange-correlation approximations are rather simi-
lar. This is also true of the dlifferences between equien-
semble energies computed in the fractional occupation
approach, Table I showing that, although correlation
brings most of the differences closer to the experimental
values, especially for small M; some of the A&(M;) com-
puted in the exchange-only approximation agree better
with the corresponding AG™*FY(M,). Correlation never-
theless affects dramatically the accuracy of our results for
the energies averaged over angular momentum. As the
notches on the right vertical axis of Fig. 1 show, all ener-
gies computed in the exchange-correlation approximation
are within a few percent of the experimental energies. In
contrast, deviations around 30% result in the exchange-
only approx1mat10n The correlation contributions to the

* excitation energies are therefore very important.

As explained in Secs. IIA2 and IIB 3, the solution of
the Kohn-Sham equations in both the equiensemble den-
sity and the fractional occupation approach yields self-
consistent temperatures, determined by Egs. (5) and (6).
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TABLE II. The self-consistent temperatures 8 and 8;, computed in the equiensemble density ap- .
proach, and the self-consistent temperatures 8(M;), 6,(M;), 6(M,_,), and 0,(M;_,), computed in the

fractional occupation approach, for I=2,3,...,11.

where k is the Boltzmann constant.

All temperatures are in units of (10~% Ry)/k,

. G(MI__I)

I g 0, o(M;) 6,(M;) 6,(M;_,)
2 2.51 2.64 3.33 2.94 0 0
3 498 . 434 6.63 5.67 1.67 2.04
4 3.09 2.97 4.12 3.75 3.34 3.18
5 2.13 2.02 2.95 2.79 1.87 1.94
6 1.85 1.64 2.24 2.05 1.53 1.43
7 1.80 1.58 1.88 1.65 1.78 1.57
"8 1.60 1.36 1.82 1.58 ) 1.60 1.38
9 1.38 1.14 1.60 1.36 1.36 1.13
10 1.26 1.03 1.43 1.19 1.20 0.98
11 1.25 1.02 1.25 1.04 1.24 1.02

The temperatures found in the runs listed in Table I are
displayed in Table II. Similar trends are observed in the
two approaches. In particular, the interacting tempera-
tures generally exceed the noninteracting temperatures,
so that, as pointed out in Sec. II A2, the exchange-
correlation potential diverges in the limit of low densities.
All temperatures being nevertheless small (k8~20 mRy),
the equiensemble energies of the confined atomic system
depend weakly on the radius R of the enclosing box.

To show this, for four I (1, 3, 6, and 10) and for various
radii ranging from 18 to 140 a.u., Table III lists the
equiensemble energies G(M;), computed in the equien-
semble density approach. The energies are generally in-
sensitive to changes in the box radius. As expected, the
energies associated with the lowest, more localized states
are much less sensitive than those associated with the
higher excitations. To compute the energy of the I =6
(i.e., 3D) state, for instance, R =35 a.u. would have been
adequate. Conversely, to compute eigenvalues with
I>11, R >70 a.u. would be necessary. As a general rule,
for each I, a broad range of radii can be found in which
the self-consistent cycles of Secs. I A and IIB converge
to energies very weakly dependent on R. Thus, provided
that the radius be appropriately chosen, one can guaran-
tee that the confinement of the atomic system distort the
excitation energies by no more than 1%. On the basis of
this criterion, all energies in Table I were computed with
R =70a.u.

B. Effective potentials and densities

This section presents illustrative potentials and densi-
ties found by solving the self-consistent Eqgs. (2). Since

TABLE III. Equiensemble energies 6(M;) for I=1, 3, 6, and
10, and various radii R of the spherical box confining the He
atom. All energies are in rydbergs.

R (au) (1) 603) 6(6) &10)

17.5 —5.678 —4.112 —3912 —3.794
35.0 —5.678 —4.112 —3.924 —3.844
70.0 —5.678 —4.112 —3.925 —3.847
140.0 —5.678 —3.849

the fractional occupation approach yields qualitatively
similar results, we here restrict ourselves to discussing the
equiensemble density method.

Plotted in Fig. 2 as functions of the radial distance 7,

‘the effective equiensemble potentials, Eq. (2b), for I =6

and 10, are compared with the ground-state potential
(I=1). For r—0, all three curves approach the nuclear
potential v(r)=—2/r. At large radial distances, howev-
er, the two higher equiensemble potentials depart
markedly from the ground-state potential and, for in-
creasing r in the range 60 a.u. <7 <R =70 a.u., they be-
come progressively more attractive.

This behavior, stemming from the logarithmic depen-
dence of the exchange-correlation potential on the densi-
ty [cf. Eq. (13)], has been discussed in Sec. Il A. Here, we
note that in this low-density region, the small tempera-
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FIG. 2. Effective equiensemble potentials [Eq. (2b)] for the
ground state (I=1) and the sixth and tenth equiensembles as

-functions of the radial distance r in the range O <r <R, where

R =70 a.u. denotes the radius of the spherical box enclosing the

“atom. In all cases, for small r, the Coulomb potential

v(r)=—2/r is dominant. In the opposite extreme, r=R, the
minute density makes the ground-state potential nearly zero; by
contrast, as Eq. (13) shows, for increasing r the effective poten-
tials for I > 1 become progressively more attractive.



tures in Table IT make the potential relatively weak, even
for r=~R. This fortunate circumstance allowed us to
work with the relatively large box radii in Table III. We
note, however, that as R increases, the convergence of the
cycles described in Secs. II A 2 and II B 3 is progressively
slowed: magnified box radii make the potential more
negative near r =R, hence drain more charge away from
the nucleus and make the temperatures 6 and 8, given
by Egs. (5) and (6), niore sensitive to the charge distribu-~
tion near »=R —all effects reducing the stability of the
self-consistent cycles. The computational cost, as well as
the accuracy of the calculation, must therefore be
weighed in specifying the radius.

Figure 3 displays the radial equiensemble densitics
47" (r) (I=1, 6, and 10) as functions of r. The
curves are strongly peaked at »=<0.5 a.u.; the area under
this peak is the occupation of the very localized 1s orbit-
al, equal to two in the ground state and larger than unity
in all cases. The broader, less distinct maxima in the
plots for I > 1 correspond to the occupied # shells: =2
and 3 for I =6 and n=2, 3, and 4 for I =10. Near the
box wall, as a result of the attractive potentials in Fig. 2,
the equiensemble densities for I =6 and 10 are enormous-

ly larger than the ground-siate density. Still, in atomic;
=~p “~107". Because of these

units they are small, p °

reduced densities, and of the moderate effective potential,
the region r =R contributes little to the equiensemble en-
ergies; for this reason, the equiénsemble energies depend
weakly on R, as our discussion of Table III pointed out.

From the equiensemble densities, the densities p; asso-
ciated with the excited states are easily calculated. From
Eq. (1) we find
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FIG. 3. Radial densities for the ground state, and for the
sixth and tenth equiensembles as functions of the radial dis-
tance. As discussed in the text, the peaks in each plot corre-
spond to the principal quantum number n entering the equien-
semble; e.g., corresponding to n =1, 2, 3, and 4, the I =10 curve
has a strong maximum at r <1 a.u., followed by a shoulder, a
peak at r==10 a.u., and a broader maximum around =30 a.u.,
respectively. The inset shows that Eq. (25) (solid line) repro-
duces poorly the expected density for the 4F state, Eq. (206)
(dashed-dotted line).
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(r)—MI_lp ) l/g; - (25)

The inset in Fig. 3 depicts the average radial density
47r2p,p, associated with the 4F (I = 10) multiplet. Given

PI(")——[MIP

_the large angular momentum of this highly excited state,

the density should be accurately described by the one-
electron picture introduced in Sec. IIT A, i.e., by the ex-
pression

(26)

where R denotes the radial part of the hydrogenic wave
function for atomic number Z, principal quantum num-
ber n, and angular momentum /. This radial density,
plotted as a dashed-dotted line in the inset, disagrees
strikingly with the density obtained from Eq. (25). Espe-
cially, the dashed-dotted line displays a maximum at
¥ =16 a.u., contrasting markedly with the two maxima in
the solid plot. This discrepancy, reflecting errors [greatly
enhanced by the subtraction on the right-hand side of Eq.
(25)] in the computation of the equiensemble densities,
reiterates the conclusion extracted from Fig. 1, that our
attempt to resolve the splitting between nearly degenerate
states [in this case the 4D (I =9) and the 4F (I =10) mul-
tiplets] exceeds the limitations of the approximate Egs.
(7) and (8). :

4mripup(r)=r’[ | R} (" | *+ | R 1?1,

1IV. CONCLIUUSIONS

In this work two numerical procedures based on a
density-functional formalism for excited states were ap-
plied to the He atom. One of the procedures is the
equlensemble density method, introduced formally by
Theophilou* and made practical by the quasi-local-
density approximation,” Eq. (7), for the equiensemble
exchange-correlatlon energy functional. The other pro-
cedure is the fractional occupation method, derived in
paper II; for practical purposes, it relies on the approxi-
mations suggested by Egs. (20) and (21), again founded on

- Eq. (7). Applied to a highly degenerate first excited mul-

tiplet this second approach is a refinement of the
transition-state’ approach;’ in general, however, Slater’s
prescription and the fractional occupation method are ir-
recongcilable.

For each principal quantum number # =2, 3, and 4 in
the one-particle excitation spectrum, the numerical re-
sults of both procedures agree very well with the mean
energies obtained by averaging the experimental binding
energies over angular momentum and spin. The split-
tings between states with the satne n but different angular
momenta are nevertheless grossly overestimated, showing
that the density-functional methods described in Sec. II
are unable to resolve small energy differences.

This inference has annoying implications. It means
that the methods in Secs. IT A and II B will generally pro-
duce blurred pictures of the experimental spectra. It also
means that semiquantitative knowledge of the splittings
in the experimental spectrum is required before an accu-
rate calculation can be carried out. Consequently, only
existing experimental spectra can be reproduced; un-
known spectra cannot be predicied.

These considerations apply to accurate computa-
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tions—at the 19 level—of the binding energies. If devi-
ations of the order of 20% are acceptable, the finer struc-
ture of the experimental data will be poorly reproduced,
but the density-functional methods will determine the

" spectrum, provided only that the ordering of the levels be
known or guessed. As Fig. 1 further indicates, the result-
ing energies will generally be significantly more accurate
than those predicted by a transition-state calculation.
Thus, even if the approximations in Egs. (7) and (8) are
stretched to their limits, the equiensemble density and the
fractional occupation methods will yield satisfactorily ac-
curate results. )

Finally, we emphasize that this first density-functional
calculation of an excitation spectrum admits refinements.
Most evidently, a spin-density generalization of Egs. (2),
or of Egs. (15), is called for. Here, the traditional exten-
sion!® underlying the local spin-density approximation
for the ground-state exchange-correlation energy func-
tional is unfortunately inadequate: lacking rotational in-
variance, it would for instance artificially separate the
S,=0 component of each ortho configuration from its
S,==*1 components. Accounting for spin remains there-
fore an open problem.

The simple form of Eqgs. (18) and (19) suggests a
second, more exciting line of research. Eq. (21), a
simple-minded interpolation based on the quasi-local-
density approximation for the exchange-correlation ener-
gy functional, brought the fractional occupation ap-
proach into alignment with the equiensemble density ap-
proach. Alternative forms for dE¥[w;p]/dw, derived
independently of the quasi-local-density approximation,
can improve the fractional occupation formulation
beyond the equiensemble density method, to overcome
the limitations exposed in Fig. 1. We hope that our study
will stimulate work in this direction.
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APPENDIX A

Equations (5) and (6), determining the temperatures 6
and 6,, and Eqgs. (7) and (8), determining the equiensem-
ble exchange-correlation energy functional and potential,
respectively, involve various thermodynamical functions
for the homogeneous interacting and noninteracting elec-
tron gases. This appendix describes the computation of
the necessary quantities. Specifically, we are interested in
the following functions.

(i) For the homogeneous noninteracting gas (density p
and temperature 6,): the chemical potential u (p), re-
quired in Eq. (8), the kinetic energy per unit volume
tse‘(p), required in Eq. (7), and the entropy per unit
volume o *(p), entering Eq. (6).
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(ii) For the homogeneous interacting gas {(density p,
temperature 6): the exchange-correlation chemical po-
tential u%(p), the exchange-correlation energy per unit
volume efc(p), and the exchange-correlation entropy per
unit volume od(p). Note that e, enters Eq. (7), while,
added to the noninteracting functions p%(p) and o%p),
the functions pl(p) and o%(p) yield the interacting
chemical potential 2%p) and the entropy per unit volume
a%p) in Egs. (8) and (5), respectively.

1. Noninteracting gas

Accurate expressions for ,uf“(p) (Ref. 8) and tse’(p)
(Ref. 11) are available. The free energy per unit volume
in a homogeneous noninteracting gas, on the other hand,
s 11 '
is

8 8, 6
fip)=pplp—4t.", 27
so that the entropy per unit volume is

o (p)=[3t>(p)—u(pIp1s0, . (28)

2. Exchange

Reference 11 presents an excellent parametrization for
the exchange contribution to the chemical potential,
yg( p). In order to compute the exchange contribution to
the interacting-gas energy per unit volume, given by

e p)=3uXpp—rlp), (29)

we need the exchange contribution to the free energy per

unit volume, f7. To this end, noting that
limp_,off(p)=0, we write
Bp)= fopyg(p')dp' ) (30)

and compute the right-hand side by numerical integra-
tion. Given the superior accuracy of the parametriza-
tion!! for ul(p), the free energy thus obtained comes
closer to the numerical results for f%(p) in Ref. 9 than
the parametrized f? in Ref. 9. Moreover, unlike the
latter parametrization, in the low-temperature regime,
6 << 6p, Eq. (30) correctly produces the weak logarithmic
singularity'! f2(p)—fp)=~ —6%1n.

Once f? is obtained, ef [Eq. (29)], and the exchange
contribution to the entropy, given by

ol=[3ud(plp—2r21/6 ,

are easily determined.
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3. Correlation

Reference 11 reviews recent efforts to calculate the
correlation contribution to the thermodynamical func-
tions of a2 homogeneous electron gas. At zero tempera-
ture, excellent parametrizations 2.(p) and &.(p) for the
correlation chemical potential and the correlation energy
per unit volume are available.!® At nonzero tempera-
tures, unfortunately, no comparably reliable expressions
exist. Uncertainties of up to 5% are estimated for the



most accurate pararnetrization!® 7 %(p) for the free ener-
gy per unit volume. To compute the correlation contri-
butions to the chemical potential and to the entropy per
unit volume, we have to differentiate numerically this pa-
rametrization, a procedure that magnifies the uncertain-
ties in the free energy:

af e op)
= (32
Eip)= % o )
and
af &(p)
50 (p)=— |—— | . 33
2{p) 30 |, ( )

The uncertainties in f%p) and & %(p) are further
enhanced in the exchange-correlation energy per unit
volume, obtained from

28 (p)=F0.(p) 465, (p) . (34)

At temperatures small compared with the Fermi tem-
perature, the parametrization f &,(p) becomes particular-
ly inaccurate.!® To ensure that our approximations for
the correlation contributions to the chemical potential
and to the exchange-correlation energy per unit volume
be accurate at low iemperatures, we subtract from Rgs.
(32) and (34) the zero-temperature values of i %.(p) and of
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2%(p), and add to them the more accurate zero-
temperature expressions of Ref. 19, i.e., we determine the
excess chemical potential and the exchange-correlation
energy per unit volume from

1) =pE=%p) +8.(p) +1E o) =B &%) (35)
and .
el (p)=el= %p)+2,(p) +[é‘xc(p)—~e %p)1, (36)

where p2(p) and ef(p) denote the exchange contributions
to the chemical potential and the exchange-correlation
energy per unit volume, respectively.

Similarly, we calculate the excess entropy from

03(p)=58(p)—5 5% . 37

For temperatures comparable to or larger than the
Fermi temperature, these manlpulatlons introduce large
uncertainties in p2(p), e%. (p), and 62(p). Fortunately,
the correlation contributions amount to typically 10% of
the energies in Table I. Moreover, the largest part of
those contributions comes from high-density regions,
where the Fermi temperature is small compared to 8, so
that Eqs. (35)-(37) are accurate. Thus, even errors as -
large as 20% in these equations will produce small
deviations—a few percent, at most—in the calculated
binding energies.
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