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ABSTRACT: On the basis of the adiabatic connection formula we propose
several approximations for the total correlation energy functional, which, in the
limit of two separated neutral subsystems, correctly reproduce the van der
Waals R™® behavior. We have calculated the corresponding van der Waals
coefficients as well as total correlation energies, thus demonstrating the feasibility
of a “seamless” functional. © 1999 John Wiley & Sons, Inc. ] Comput Chem
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Introduction

F or many years, density functional theory
(DFT)'* has been successfully employed to
describe the electronic structure of atoms, mole-
cules, and solids. Recently, DFT has become in-
creasingly popular in theoretical chemistry due to
the continuing improvement of the exchange-cor-
relation (xc) functionals available.

Correspondence to: E. K. U. Gross
Contract/grant sponsor: Deutsche Forschungsgemeinschaft

Journal of Computational Chemistry, Vol. 20, 12-22 (1999)
© 1999 John Wiley & Sons, Inc.

DFT yields accurate total energies of atoms and
molecules. However, none of the commonly used
functionals contains the van der Waals (vdW) in-
teraction. This means that they do not reproduce
the well-known R™° behavior characterizing the
interaction of two widely separated neutral frag-
ments. Clearly, the true correlation energy func-
tional must include the vdW interaction.” The con-
ventional local density approximation (LDA) and
generalized gradient approximations (GGA) are
essentially local; that is, the exchange-correlation
potential, v, (r), at a point r is determined by the
density and its low-order gradients at the very
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same point r. The description of long-range forces
such as the vdW interaction requires fully nonlocal
functionals.

There have been several suggestions for con-
structing density functionals yielding the vdW in-
teraction.’ '* But, until now, there is no functional
that has proven to yield both vdW coefficients and
total correlation energies of atoms and molecules
with reasonable accuracy.!’ The goal of this work
is to find a nonlocal xc functional which makes
exactly that possible. We note that Dobson and
Wang have done “seamless’” calculations based on
the concepts described in ref. 9 for a jellium slab
situation,'? but so far not for atoms and molecules.

In the following section we first introduce the
basic concepts leading to the construction of our
vdW functional. It uses results of time-dependent
DFT and linear-response theory. In the subsequent
sections we present several approximations along
with numerical results for vdW coefficients and
correlation energies.

Method

DENSITY FUNCTIONAL THEORY
We are interested in N-electron systems de-
scribed by the Hamiltonian:
H=T+V+W (1)
Here, the operators f, \7, and W represent the

kinetic energy, the external potential, and the
Coulomb interaction between electrons:

. N K2
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The formal foundation of DFT is the Hohenberg-
Kohn (HK) theorem." Its most important aspect is
the one-to-one mapping between the external po-
tential, v(r), and the ground-state density, n(r).
Thus, it allows us to express formally any observ-
able of the system as a functional of the ground-
state density.

DESCRIPTION OF voW INTERACTIONS

The particular form of the particle-particle in-
teraction does not enter the proof of the HK theo-
rem. Hence, for a noninteracting system the theo-
rem holds as well. In spin DFT, one uses the spin
densities 7, and 7 as the basic quantities; that
is, all observables are understood as functionals of
the spin densities. Then, by applying the HK theo-
rem to noninteracting particles there is a uniquely
determined spin-dependent single-particle poten-
tial, v,,(r), that reproduces a given set of ground-
state spin densities, n,(r). From the solutions of
the single-particle Schrodinger equations:

hZ
[— — V> +0,0|¢, @ =¢€,¢, (5

2m

we can compute the spin densities and the total
density:

1,0 = ¥ o] 0,0 (6)
i
n() =n,(x) +n, (r) (7)

where f;, is the occupation number of the orbital,
Pjo (elther 0 or 1).

Next, we define the exchange-correlation en-
ergy, E,, by splitting the total energy of the inter-
acting system into:

EJfn,,n 1=Tln,, n

1+ / Brn()o(r)
n(r)n(r )

o5 v e
+E.[n,, n ] (8)

where T, denotes the kinetic energy of the nonin-
teracting system. Applying the HK variational
principle to this representation of the total energy
one finds that the single-particle potential, v, (1),
reproducing the spin densities of the interacting
system, the so-called Kohn-Sham (KS) potential,?
is given by:

n(r")

0, (1) = v(®) + e [ dr ] T e ® ©)

where the xc potential, v,.,(r), is the functional

derivative of the xc energy:
SE,..[n 1y ]

[ a(r) = 87’1”(1')

(10)

By employing an approximate functional for E .,
and solving egs. (5), (6), (7), and (9) self-con-
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sistently, we find the ground-state spin densities.
Then, the total energy functional [eq. (8)] yields
the ground-state energy.

Because we know the exact expression for the
exchange energy in terms of the KS spin orbitals:

EES[{%U}]

2
e
= =5 L L fifio [ drd’r
o jk

oX (i (e, (e, (')
x e ko (11)
e —r'|
we may concentrate on finding approximate func-
tionals for the correlation energy, defined as:

E.=E_.—ES (12)

However, the use of the exact exchange requires
the treatment of functionals depending explicitly
on the KS orbitals rather than on the density. In
this case, the xc potential cannot be calculated by a
straightforward functional derivative, because the
dependence on the density is not known explicitly.
In the so-called optimized effective potential (OEP)
method,'>'* the potential is determined by an in-
tegral equation that can be derived by applying
the functional chain rule to eq. (10). In the most
general case, the xc energy functional depends on
all KS orbitals and KS energy eigenvalues. Then:
XC {‘P]V’ e]v}]

zaﬁ'[d3 ”{'/dS ,l 8¢, (")

o 8¢, (1) bv,,5(r")
50,,() on,(m O C

U g (D) =

+ aEXc[{¢jy/ 6]',,}] 861'“ 8USB(I")
€y 8v,5(r") 8n, (1)
(13)

leads to the OEP equation:

and:

GS I-(T(r’,r) _ Z QDkU(I‘ )@ko(r) (16)

k=i €ioc  €keo

The numerical solution of the OEP equation is
very involved. For xc functionals depending only
on the occupied orbitals, there exists a simplified
scheme due to Krieger, Li, and Iafrate (KLI),>''®
which avoids the full numerical solution of the
integral equation. Exchange-only calculations show
that the KLI results are practically identical to the
exact OEP results, whereas the numerical effort is
comparable to conventional density functional cal-
culations.

The above definition of the correlation energy
differs slightly'” from the one used in quantum
chemistry, where it refers to the difference be-
tween the exact total energy and the Hartree—Fock
energy:

EQC = E — EFF (17)

ADIABATIC CONNECTION FORMULA

We search for a correlation energy functional
that, apart from yielding good total correlation
energies, contains the vdW interaction. We start
from an exact expression for E,., which is based
on the so-called adiabatic connection formula (see,
e.g., ref. 8):

1

E.= ~5 Old)\derd3r’ w(r,t')
h
><{ —f du ZX()‘)(r r zu)}
T
+n(r)8(r — r')} (18)

Here, w(r, ') = ¢?/Ir — 1’| is the Coulomb interac-
tion. x{} denotes the spin-density response func-
tion'® 1%

sn o, v, (D)
dv,.(r t)

xM(rt, v't) = (19)

(o0

of a fictitious system with Coulomb coupling
strength, Ae?, in a potential, v{"(r), which is deter-
mined by requiring that the (unperturbed) spin
densities are equal to those of the fully interacting
system. nfr)‘)[vT, v, ] denotes the spin density as a
functional of the potentials, v, and v, at fixed

Zder,[vXC"(r,)ﬁﬂ' — Uye i(r(rl)]
sur(r r)(P,(,(I')QD“r(I' ) + c.c.
JE
=Y —lg, @I (14)
i &Ei(r
where:
1 8E[{e €]
Uy 1o (1) = o 50, (D (15)
14
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coupling constant A. As x2Xrt,t't') depends only
on the difference (t+ — t'), the Fourier transform
with respect to (f — ') may be taken. The resulting
frequency-dependent response function, evaluated
at imaginary frequencies, iu, is the one appearing
in eq. (18). The integration over the coupling con-
stant, A, connects the fully interacting system (A =
1) with the noninteracting KS system (A = 0), while
the (unperturbed) spin densities are held constant.

If, in eq. (18), we replace x!} by the noninter-
acting KS response function, x;,,, then we obtain
the exact exchange energy, eq. (11). Consequently,
the correlation energy is given by:

i
—_ 3 3. ’
E = Zﬂ_/d)\/drdrw(r,r)

C
X[ du Y [ X0, v iu) — xg por(x, ' )]
[of

(7

(20)

We now make use of the Dyson-type equation that
relates the interacting to the noninteracting re-
sponse function'® '%:

Xoo' (EE,¥'H) = X oo (2, 1'H)
+ ¥ [ dxd’x drdr’

X Xs oo (Xt xT)[w(x,x)8(r — 7')

+fxc VV’(XT’ XIT,)] XV’(T’(XIT” r t,)
(21)
Here, the xc kernel, f,. ., is the functional deriv-
ative of the time-dependent xc potential:

8v,. n,, n 1t)

on.(x't") 22)

fxc mr'(rt/r,t,) =

Transforming eq. (21) to the frequency domain,
writing it for an arbitrary coupling constant, A,
and inserting it into eq. (20), leads to the exact
formula:

E = h f dAfd3 rd3r d3x d3x'w(rr)f du

¢ 27T

Y Xeow(r,x; i)
X [Aw(x, x) + fO 0, x5 iu)] x D, 15 iu)
(23)

The noninteracting response function appearing in
eq. (23) can be expressed in terms of the occupied

DESCRIPTION OF voW INTERACTIONS

and unoccupied KS spin orbitals:

Xsmf'(r’r,; 0)) = ﬁ 0'0' Z(fka' f]a')

% QD;cko (r) Pio (r) Pk o (r') QD;:, (")

w — + in

]a' ko

(24)

Wi, ko 18 the frequency difference between the
orbitals ¢;, and ¢, .

In this work, we do not try to solve the Dyson-
type equation for the response function in a self-
consistent manner. Rather, we employ approxima-
tions for f{» and x» on the right-hand side of eq.
(23). They should be simple enough to allow some
analytical integrations, so that we obtain a useful
expression for the correlation energy. There are
two exact properties of the response function that
are helpful for constructing approximations®:

1. Charge conservation: fd3r Y Xoo (15 @) =0
(25)

= X,o (', 1, —iu)
(26)

2. Reciprocity: x,,(r,t'; iu)

We examine the vdW behavior of the approximate
functionals in the following way: We apply them
to a system of two nonoverlapping subsystems A
and B at a distance R. For large R, the total
correlation energy consists of a constant part (the
correlation energies of the isolated subsystems)
plus a vdW part, which should asymptotically
behave like:

Epuw = — R—i for R — o (27)

where we have used the vdW coefficient, C,. Al-
though none of the commonly used functionals
produces the R™¢ dependence at all, our approxi-
mations will, enabling us to calculate vdW coeffi-
cients from them.

APPROXIMATIONS

For the xc kernel, there exists a simple orbital-
dependent formula, which was introduced by Pe-
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tersilka, Gossmann, and Gross (PGG)™ 2°:
O (r, 1 w) = — A8, w(r,t')

1T fro 00 D @}, (1) 1
n,(r)n, (r')

(28)

It is based on the time-dependent optimized effec-
tive potential method in the exchange-only ap-
proximation. Therefore, it is proportional to the
coupling constant. Within this approximation the
xc kernel does not depend on frequency. In what
follows, we drop the frequency argument. We note
that eq. (28), if inserted in eq. (23), leads to a
self-interaction-free correlation energy functional;
that is, E_ reduces to zero in the limit of one single
particle.

For the response function, we test several ap-
proximations. First, we insert:

Xed) = Xo oo’ (29)

on the right-hand side of eq. (23); that is, we use
the noninteracting density response. Integrating
over A and u yields:

T Fiko Funor [ @rdPr dPxd®x'w(r, ')
]kmn
(T(].‘ X)anna’(x,'r,)
thxc mr'(xlx ) ]k
Wis, ko + Wyo' no'
(30)
where:
f}k(r :fktr(l _fjtr) (31)
fhxc mr’(x’ X,) = ZU(X, X,) +fxc mr’(x’ X,) (32)
and:

M, (1,%) = @5, (1) ¢;, (1) ¢, () @, () (33)
The indices k and n label the occupied orbitals,
and j and m label the unoccupied ones. Through a
multipole expansion of the vdW part of eq. (30) we
find the vdW coefficient for the interaction of two
nonoverlapping subsystems A and B:

64

3
CéXS = Z 1+ 3831) Z f]k(rfmnzr'

h; Jkmn
oo’

,>(B)|2

y [kl jo Y [¢nolrime

+ w

(34)

](r ko ma', no’

This involves dipole-operator matrix elements of
the isolated subsystems.

Eq. (30) is similar to second-order perturbation
theory. This gives rise to the problem that it will
diverge if it is applied to the uniform electron gas.
Nevertheless, we expect reasonable results for fi-
nite systems.

If we want to describe bulk metals, a different
approach is necessary. For simplicity, we will re-
strict ourselves to spin-saturated systems in the
following; that is:

n, () =n, (r) (35)

@ (1) = ¢ (1) = ¢(n) (36)
Wjr,ky = @jy kg T O (37)
M, (r, 1) = My (r,1') = M (xr,r')  (38)
fir =fiv = (39

fie(r, 1) = iZ,fxc v (L, 1) (40)
Xt v't) = 2;A30(rt,ﬂt0 (41)

A very simple ansatz is the hydrodynamic re-
sponse function, which can be derived through a
classical, pressure-free treatment of the uniform
electron gas. In the homogeneous case it is given

by:

nq
XM (g ) = ———— 42)
m(w - wp)
with o, being the plasma frequency:
4 ne*
wé = (43)
m

In ref. 8 it is suggested to generalize this to inho-
mogeneous systems by using it in a local sense
and complying with the conditions of egs. (25) and
(26). This leads to:

n(r)

W r; w) = VV, —— 8 ———
X 2 o m(w2 - w}f(r))

S(r—1r'") (44)

Obviously, to obtain the corresponding xV, we
must replace wp by Aw Using this expression to
evaluate the Correlatlon energy from eq. (23), the
integrations over A and u can be done analytically,
and the delta function in eq. (44) reduces the

16
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number of spatial integrations. The final result is:

1
hy _ _ — 3 3 347 !
EMN = 47-rezfd rd’xd’x'[V,w(r, x')]
X [ Vx’fhxc(xl X’)]

X Y f,(1 — f) M (x, x)f(
jk

(l)jk

wp(x’)

) (45)
where:
1
f(x)=1—2x+2x21n(1+;) (46)

Unfortunately, the correlation energy of the uni-
form electron gas is poorly described by this for-
mula.?! The reason is that, for large wave num-
bers, the excitation frequencies of the electron gas
are no longer given by the plasma frequency but
rather by single-particle excitations. A so-called
plasmon-pole model has been proposed to deal
with this problem.?? Its basic idea is to assign just
one excitation frequency, w,, to each wave number
. The plasmon-pole response function then reads:

xP(q, ®) = (47)
ml| w

The two most important conditions o, should
satisfy are given by:

w, = , forg — 0 (48)
f
w, = qu for g — (49)

We use a very simple interpolation between both
limits and include the A-dependence:

h
N — ) 2
wq)‘ = wif + qu (50)

The corresponding real-space response function of
the homogeneous gas at imaginary frequencies is:

d3 n 2eiq(r—r’)
XV i) = [ qa - 2
(2) m[u2 + (wf])‘)) ]

(51)

In this expression the density is constant. The
inhomogeneity in the density of the actual system
of interest will be reintroduced later. Performing
the integrations over u and q in the correlation

DESCRIPTION OF voW INTERACTIONS

energy formula leads to:

1
E = Alrd®r dxd3x’ 1—F
= oy sy T g
X [Vaw(r, t)][V, fre(x, x)]
X M]-k(r, )EX — 1) (52)
where:
n e .4
&) = — [ dA
ﬁw]-k r Yo
X /\[efrv(ZIn/h)wg‘) _ efr‘/(ZHl/ﬁ)(wg,*)vajk)]
(53)

The integral in eq. (53) can be evaluated analyti-
cally. It is, however, more convenient to approxi-
mate the resulting, rather lengthy, expression by
an exponential:

E(r) =ae”"/? (54)

We exploit the properties:

de(r)|  (2mw, |’ 1

ir ro“( P )E (55)

fd%g&)=dfi) (56)
@y

to determine a and b:

3 mep 32 Wiy 1/4
“—( n ) m—wzf(w—) 7

P

1/2 1/4
i 2f[ 2 (58)
Zma)p w,

The function f appearing in these equations has
been defined in eq. (46). With the simplification,
eq. (54), we can do one spatial integration analyti-
cally, and we arrive at an expression similar to the
hydrodynamic result:

b

1
EPl = —— [ B3¢ dB3xd3y 1-*
c 4W€2fd rd’xd’x %fk( £
X[ereff(r/x,)][vx'fhxc(x,xl)]

ik ) (59)

wp(x’)

X M (x, x)f(
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which, in contrast to eq. (45), contains an “effective
interaction”:

(22

Gl = ]
2 1 1 [r=x'| / b(x")

— e + e "

2b(x")  Ir — X

(60)

Here the inhomogeneity of the actual system of
interest has been taken into account in the spirit of
an LDA by evaluating b(x') from eq. (58) with the
local plasma frequency w,(x"). For large distances,
eq. (60) reduces to the Coulomb interaction. The
short-range part, however, is cut off by the expo-
nential. This is related to the fact that the differ-
ence between the hydrodynamic and the plasmon-
pole response functions lies only in the high-g
region. The vdW interaction is merely determined
by the long-range behavior of w,;. Therefore, both
approximations yield exactly the same vdW coeffi-
cients, namely:

2

) 3
C¥ == L1 +35,) Lfi1 - f)
4m /5 jk
2 2
x{|<k|ri|j>(A)| F® +|Cklrl P F/'(kA)}
(61)
with:

F(A)/(B) :f drf Ok (62)
¢ A/B wp(r)

It is a common feature of all our approximations
that the xc kernel drops out in the multipole ex-
pansion leading to the vdW coefficient. Therefore,
C, is not affected by the choice of f,..

Results

First, we take a brief look at the plasmon-pole
calculation in the uniform electron gas. To separate
the effect of the xc kernel, we first consider the
correlation energy in the random phase approxi-
mation (RPA) which is obtained by setting f,. = 0.
In Figure 1, we have plotted the RPA correlation
energy per electron, €X'*, versus the Wigner—Seitz
radius, r,, which characterizes the density through

T T ! '
3 exact N
[ I N T plasmon-pole
>
N
2 -
=
"o
N
1 -
0 ' : : :

FIGURE 1. RPA correlation energy of the uniform
electron gas.

the definition:

1 47 5 ©3)

—=—r

n 3 °
Figure 2 shows the correction produced by the
inclusion of the PGG xc kernel. In both cases, the
agreement with the exact values is acceptable. For
comparison, Figure 2 also shows the corrections
produced by the local xc kernels:

2

fx);-ALDA(x/ X,) — 5(X _ x/)%

[ne,(n)] (64)

and:

fxx—HFLDA(x, X) = 8(x — x’)[— énz/s i Ex(”)}

. 5 n n2/3
(65)
2 T ' ' '
: exact
= S x-ALDA
% \z‘ ------ x-HFLDA
N \.“\ ----------- PGG
R |
adwu ~~~~~~~~~~~~
N
i‘-’ CTmmeARiis el
0 : ' : I
; 5 4 6 8 10
rs (a.u.)

FIGURE 2. Correction to RPA in the uniform electron
gas using different xc kernels. Exact values from
Ceperley-Alder data (see refs. 23 and 24).
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with:

(66)

These are the exchange parts of the adiabatic local
density approximation (ALDA) and the high-fre-
quency local density approximation (HFLDA).'®
We use only the exchange parts because they are
proportional to the coupling constant, thus allow-
ing the same analytical integrations that we did
with the PGG approximation. It turns out that the
x-ALDA corrections are too large by a factor of 2.
On the other hand, the x-HFLDA kernel works
surprisingly well.

Now we focus on the central issue, the vdW
interaction. In the case of the plasmon-pole model
we have evaluated the vdW coefficients, C,, for
rare-gas atoms. For this purpose we have calcu-
lated numerical wave functions from existing xc
functionals and inserted them into the C, func-
tional. Recently, Andersson, Langreth, and Lund-
qvist (ALL) calculated C; with a different density
functional method.” However, their formula for
the vdW energy, given by:

3h
EALL - _ d3 d3 !
vaw 3272 fA 1’/3 '

wp(r) a)p(r’) 1

wp(r) + wp(r') r—r

G

can be shown to originate from a hydrodynamic
approximation also.® Whereas, in the present work
we have used the hydrodynamic response function
in the exact expression for the total correlation
energy, ALL substituted it into the Zaremba—Kohn
formula,” which expresses the vdW energy ex-

DESCRIPTION OF voW INTERACTIONS

actly in terms of response functions. When com-
paring our results with those of ALL we have to
take into account that they have used a spatial
cutoff that crucially alters the C, coefficients. They
argue that the hydrodynamic approximation over-
estimates the density response in the outer region
of an atom. Their cutoff criterion, which has al-
ready been used in an earlier work by Rapcewicz
and Ashcroft’ reads:

— >t (68)

where vy, is the local Fermi velocity. It skips those
regions where the length scale for the change of
the local Fermi wave vector is smaller than the
electron screening length.

In Table I we show the vdW coefficients result-
ing from our approximation and the correspond-
ing numbers from the ALL formula, eq. (67), with
and without applying the cutoff, eq. (68). The
wave functions stem from an exchange-only KLI
calculation. Other functionals, such as the self-in-
teraction corrected local density approximation
(LDA-SIC),* give similar results, usually deviat-
ing from the x-only—KLI by about 5%. We find
that, without using the cutoff, all numbers are
much too large, but the present approximation
performs better on average. The cutoff takes the
ALL coefficients surprisingly close to the empirical
numbers, whereas, in our case, the cutoff does not
work as nicely.

Now we turn to the y, approximation. In Table
II we compare the vdW coefficients with empirical
numbers. Because this approach yields better coef-
ficients than the plasmon-pole model, we have
also included alkali atoms and hydrogen. While

TABLE I.
vdW Coefficients C4 from Various Hydrodynamic Approximations.?
ALL Present

Atoms Without cutoff With cutoff Without cutoff With cutoff Empirical
He—He 42.7 1.95 6.58 2.68 1.458
Ne—Ne 77.5 6.84 21.3 10.9 6.383
Ar—Ar 328 63.4 219 139 64.30
Kr—Kr 525 123 422 285 129.6
Xe—Xe 914 264 937 669 285.9

@ The approximation due to Andersson, Langreth, and Lundqvist (ALL), eq. (67), is compared with the present formula, eq. (61),
and empirical values. The calculation has been done with and without the cutoff, eq. (68). Wave functions from x-only—KLI.

Empirical values from ref. 26. All numbers in atomic units.
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TABLE II.

vdW Coefficients C, from the x, Approximation, Eq. (34).2

Atoms x-Only—KLI CS—-KLI LDA-SIC—KLI Empirical
He—He 1.664 1.639 1.594 1.458
He—Ne 3.490 3.424 3.495 3.029
Ne—Ne 7.447 7.284 7.761 6.383
Ar—Ar 128.5 124.4 133.2 64.30
Kr—Kr 282.4 271.3 290.0 129.6

Xe—Xe 730.7 6971 734.6 285.9

Li—Li 1460 1313 1423 1390

Li—Na 1689 1453 1485 1450

Na—Na 1957 1614 1560 1510

K—K 6665 5265 4662 3890 + 20
Rb—Rb 9624 7505 6347 4870 + 70
H—He 3.022 2.995 2.948 2.82 + 0.02
H—Ne 6.060 5.976 6.227 5.71 + 0.07
H—Li 67.99 64.96 67.22 66.4 + 0.5
H—Na 81.14 75.43 74.50 718 +03

# Hydrogen wave functions were calculated from the exact potential, all other wave functions from x-only—KLI, Colle-Salvetti-KLI, or
LDA-SIC-KLI potentials as indicated. Empirical values from ref. 26 and 27. Empirical values of the alkali atoms are accurate to
three digits if no uncertainty is indicated. All numbers in atomic units.

the hydrogen wave functions have been obtained
from the exact potential, we used x-only—KLI, Col-
le-Salvetti-KLI (CS-KLD*? and LDA-SIC-KLI
wave functions for the other elements, as indi-
cated. Indeed, eq. (34) is exact for the interaction of
two hydrogen atoms, because hydrogen possesses
only a single electron, the density response of
which is given exactly by x,. So, it is not surpris-
ing that the calculated C, of 6.499 a.u. equals the
empirical value? of (6.49 + 0.02) a.u. in this case.
As is obvious from the table, the results are good
for the light atoms H, He, Li, Ne, and Na. For the
heavier elements, however, the numbers become
increasingly worse. Almost all numbers are bigger
than the empirical values. We note that the rare-gas

TABLE III.

values are less sensitive than the alkali values to
what kind of wave functions are used. The vdW
coefficient given by eq. (34) can also be obtained if
one applies perturbation theory directly to the
vdW energy; that is, if one uses x = x, in the
Zaremba—Kohn formula.” This has been done by
Gorling and Levy, who have then used basis sets
to evaluate C, leading to very similar results.*
Table III shows atomic correlation energies com-
puted from the y, approximation with the PGG xc
kernel. These calculations have been done with
x-only—KLI wave functions. In the case of He, Be,
and Ne, Umrigar and Gonze have published prac-
tically exact numbers for the DFT correlation en-
ergy.”** To judge the quality of the functional, we

Atomic Correlation Energies from Various Approximations.?

Atom EXs LDA LDA-SIC-KLI CS-KLI PW91 Exact/empirical
He —0.048 -0.111 —0.0582 —0.0416 —0.0450 —0.0421
Be -0.13 —0.224 —0.1169 —0.0934 —0.0942 —0.0962
Ne —0.41 —-0.739 —0.4283 —-0.3757 —-0.3784 —0.394
Ar -0.67 —1.423 —0.8330 —0.7435 —0.7687 -0.72

4The x, approximation, eq. (30), using the PGG xc kernel, eq. (28), is compared with self-consistent DFT results and with exact

DFT correlation energies for He, Be, and Ne®'-32

for Ar33 as defined in eq. (17). All numbers in hartrees.

as defined by eq. (12) and the conventional quantum-chemical correlation energy
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TABLE IV.

Total Atomic Ground-State Energies from Various Approximations.?

Atom Exs LDA LDA-SIC—KLI CS—KLI PWO1 Exact/empirical
He —-2.910 —2.835 —2.920 —2.903 —2.900 —2.9037
Be —14.71 —14.446 —14.695 —14.665 —14.648 —14.6674
Ne —128.96 —128.230 —129.287 —128.920 —128.947 —128.939

Ar —527.48 —525.940 —528.432 —527.553 —527.539 —527.604

A, (%) 0.14 1.19 0.29 0.016 0.070

# Total energies obtained from the yx, approximation using the PGG xc kernel, eq. (28), are compared with self-consistent DFT

results and exact/empirical values.®3*

hartrees.

also compare with results of self-consistent DFT
calculations using some established xc functionals.
Finally, in Table IV, we compare total ground-state
energies. Here, E*: is the sum of the x-only—KLI
total energy and the correlation energy, E*: (Table
III), whereas the other values are from self-con-
sistent calculations as in Table IIl. The mean rela-
tive deviation from the exact/empirical numbers
shows that our approximation is superior to the
LDA and to the LDA-SIC. On the other hand, the
orbital-dependent CS functional and the GGA of
Perdew and Wang (PW91)* perform better in this
context.

Conclusion

We have described an approach that allows the
treatment of vdW interactions in DFT. We have
presented several approximations of the correla-
tion energy functional that include vdW energies.
The numerical results show that our approxima-
tions need further improvement to give reliable
results for arbitrary systems. Some aspects, how-
ever, are already described quite well, especially
the vdW coefficients of light atoms as well as the
total correlation energies of rare-gas atoms. The xc
kernel of Petersilka, Gossmann, and Gross has
proved to be very useful in the present context.
The main progress is that, in contrast to previous
work, we have calculated vdW energies and total
correlation energies from one and the same func-
tional.
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