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: I. Basic formalism

E. K. U. Gross, L. N. Oliveira,* and W. Kohn
Department of Physics, University of California, Santa Barbara, California 93106
(Received 21 October 1987)

. A density-functional theory for ensembles of unequally weighted states is formulated on the basis
of the generalized Rayleigh-Ritz principle of the preceding paper. From this formalism, two alter-
native approaches to the computation of excitation energies are derived, one equivalent to the
equiensemble method proposed by Theophilou [J. Phys. C 12, 5419 (1979)], the other grounded on
an expression relating the excitation energies to the Kohn-Sham single-particle eigenvalues.

I. INTRODUCTION

Density-functional theory was originally developed!?
as a ground-state formalism. For excited states, a
straightforward extension on the basis of the Rayleigh-
Ritz principle is possible only for the lowest-energy state
in each symmetry class.>* A more general approach,
applicable to arbitrary excited states, has been proposed
by Theophilou,” who extended the theory to equiensem-
bles of the lowest M cigenstates, equally weighted. Using
a variational principle for the ensemble energy, he
demonstrated that the ensemble density uniquely deter-
mines the external potential and that the correct density
of a given system can be obtained by solving seli-
consistently a set of Kohn-Sham (KS) —like equations.
The exchange-correlation functional EM[p] arising in
this formalism has recently been investigated,® a quasi-
local-density approximation for E¥ having been derived
by identifying the equiensemble with a thermal ensemble.

In this paper, we shall develop a density-functional
theory for ensembles of fractionally occupied states. In
these ensembles, the M states are weighted unequally.
The extended Rayleigh-Ritz principle presented in the
preceding paper,’ hereafter referred to as I, enables us to
generalize * Theophilou’s ensemble, different weights
Wi, Wy, - .., Wy being assigned to the lowest M eigen-
states. A density-functional formalism for such an en-
semble, parametrized by M distinct weights, can be con-
structed. For practical applications, however, it is more
convenient to define the weights as functions of a single,
real parameter w. Thus, for example, in the case of a
nondegenerate spectrum, we assign to the highest-energy
state in the ensemble the weight w (i.e., choose w,, =w)
and assign to each other state the weight (1 —w)/(M —1)
[i.e., choose wy=w,="-" - =wy_=(1—w)/(M—1)].
The condition w; >w, > - * - >w,, required by the vari-
ational principle in paper I, implies that O<w <1/M.

For w=1/M, this definition of the weights ensures
that Theophilou’s formalism® for an equiensemble of M
states be recovered, all weights being equal to 1/M. Simi-
larly, for w=0, the formalism for an equiensemble of
M —1 states is obtained, all weights being equal to
1/(M —1). In these two limits, therefore, Ref. 6 provides
an approximation for the exchange-correlation energy
functional.

Our analysis leads to an exact expression relating the
excitation energies to the KS energies. In a subsequent
paper,® hereafter referred to as III, we shall show that, *
with a simple approximation, the expression for E M in
Ref. 6 turns the formal relation into a practical, accurate
calculational device. In this context, we shall compare
our expression with Slater’s transition state formula.’
Here, however, we concentrate on deriving the exact rela-
tion.

The paper is organized as follows. Section IT develops
the density-functional formalism for M =2, i.e., for en-
sembles comprising only the ground state and the first ex-
cited state, both assumed nondegenerate, with weights
1—w and w, respectively. Section III addresses the cal-
culation of the first excitation energy. Section IV extends
the basic formalism to larger ensembles, including degen-
erate states. Section V discusses the calculation of the
corresponding excitation energies. The density function-
als considered in Secs. II-V are defined for ensemble v-
representable densities; Sec. VI extends the domain of
these functionals to arbitrary non-negative functions, us-
ing tPle constrained search formulation of Levy!® and
Lieb.

II. DENSITY-FUNCTIONAL FORMALISM
FOR NONDEGENERATE TWO-STATE ENSEMBLES

Consider a many-electron system with Hamiltonian

B=T+0+V, M
where

=1 [V -Virdr ' (2a)

AT PO

o=1f [ ¥ (rw, r(r_),‘b.(f W gsradr, v

P=[prwmndr, (2¢)
and

=T . (2d)

Here, v (r) denotes the external potential, and () is the
usual fermion field operator. Atomic units are used
throughout this paper. ‘

For notational convenience, the ground state,
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A|\1)=E |1},
and the first excited state,
A12)=E,|2),

are assumed nondegenerate. This restriction is by no
means essential, however; degeneracies will be discussed
. in Sec. IV.
We consider the ensemble density

p(N=(1-w)1|pr | 1)+w(2|pr]|2}, 3)
where w is any real number in the interval
O<w g{. 4)

The coefficients on the right-hand side of Eq. (3) ensure
that

[ptnd*r=N, ()

provided that both states, | 1) and |2), contain N parti-
cles.
If now

p'(N=1—w){1"| (]| 1) +w {2 | p(r)|2") (6)

is calculated with the ground state | 1’) and the first ex-
cited state |2') (both assumed nondegenerate) of the
Hamiltonian A’ T+ i + V ' then

p(rplr)

provided that P and P’ differ by more than a constant.

The proof of this statement follows the original argu-
ment of Hohenberg and Kohn! (HK). For notational
brevity, we define a density matrix

D=(1—w) | 1){1] +w |2){2] .

The ensemble expectation value of any operator 4 is
then the trace

tr{D A)=(1—w){1} 4 | 1) +w(2| 4 |2) .
Now, consider the density matrix
D'=(1—w) | "1 +w | 2)(2'| .
The variational theorem of paper I then shows that
te{DA} <tr{ DA} .

Since |1’) is different from |1), we have a strict in-
equality here [this follows from part (b) of the variational
principle; cf. Eq. (14) of paper I].12

In the trace on the right-hand side, we rewrite B as
B'+P— The definition (2¢) of ¥ and the analogous
definition of f) ' then yield

tr{D A} <tr{D'A") +fp’(r)[v(r)—v’(r)]d3r . (7)

.The primed and unprimed variables interchanged, we
find

tefD A"} <tr{ DAY+ [p(nv'(2)—v(»)]d’r . ®)

By adding (7) to (8) and assuming p’(7)
led to the contradiction

=p(r), we are
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tr{D B '} +tr{D A} <tr{D A)+ur{D A"},

which proves the desired statement.

For fixed w, therefore, the potential £ and hence its
eigenstates | 1’) and |2') are uniquely determined by
p'(r), so that the ensemble expectation value of T+Uisa
functional of the density,

Flw;p'l=(1—wXl | P+ 0| 1) +w(2 | T+ 029
©)

It follows from the variational principle derived in pa-
per I that the functional

E,[wip'l= [ p'(nv(nd®r +Flw;p'] (10)
has the following properties:

E,[w;p']>(1—w)E,+wE, for p'(r)£p(r) (11a)

and

EJJw;pl=(1—w)E,+wkE, , (11b)

where p(r) is the ensemble density associated with v (7).

In the following, the variational principle (11) will be
used to generate a KS scheme. This end in mind, we
define a density functional for the exchange-correlation
energy by

E, [w;p'l=Flw;p']-T,[w;p’] _
—3f f”—"l——'(’ a%r dir (12)

where
T, [w;p' 1=(1—w){1; | T| L) +wl2) | T]2,) (13

denotes the kinetic energy of a noninteracting ensemble
subject to the external potential

Pi=[virprd’r . (14)

This potential is chosen to make the noninteracting en-
semble density equal to p', i.e.,

P (r=(1—w)(1, | pr | 1L +w {2, | plr) |2, (15)

where | 1,) and |2,) are the ground state and the first
excited state of the noninteracting system in the potential
P'. Existence of the potential, i.e., noninteracting-
ensemble v representability, is assumed.

With the definition (12) of the exchange-correlation
functional, the total-energy functional (10) can be written
as

E,Jw;p'1=T,[w;p'1+ fp'(r)v(r)d3r
+ ffm,d:i d3r'+Em[w;p'] .

(16)

According to the HK theorem proved above, the densi-
ty p’(r) determines »,(r) uniquely, so that a unique poten-
tial v (r) is associated with the density p(#) minimizing
E,[w;p']. The following analysis determines v,.



37 DENSITY-FUNCTIONAL THEORY FOR ... . L ...

The noninteracting N-particle functions |1,) and
|2;) are Slater determinants comprising single-particle
orbitals obeying the Schrddinger equation

— iVl (N =g,@;(r); g <g< . (17
In terms of these orbitals, the ensemble density, Eq.

(15), is given by

N-—-1 . )
P=3 |@n |2 +(1—w)|ey(r) |

i=1
4w I¢N+l(r) I 2 . (18)

Similarly, the noninteracting kinetic energy can bs ex-
pressed as

N-1
T[wip'l= 3, ti+(1—wlty+wty,,, (19)
i=1
with ‘
= [ @t r)(—1V)p;(r)d3r . (20)
According to the variational property, Eq. (11),

E,[w;p’] must be invariant under small changes 3p
around the correct density p(r), i.e.,

8E,=8T,+ [ 8p(rv(nd*r+ [ [ 8 ('i(,’ Lasrasy

|r—r"|

+f8p(r)uxc[w ;plrd3r =0, (21)

where

Uy [w;pF)=8E [w;pl/8p(r) . 22)

For fixed w, the change in the noninteracting kinetic
energy is given by

N-—1
8Ty= 3 8t;+(1—w)dty+w Sty ,
i=1
where, in view of Green’s theorem,
8t;= [ 8o~ 1iV2)p,(r)d3r
+ [ 8g,(rt =12 @t (r)d’r .

Since the orbitals ¢p;(r) solve Eq. (17) for vi(r)=v,(r),
it follows that

o1 = f&P}‘(r)[sj —v,(N]e;(r)d’r
+ [ 8@;(ne;—v,(Mltrd’r

and hence that

8tj=sj8f | @;(r) | 2d3r —fvs(r)slcpj(r)|2d3r .

The @; being normalized, the first term on the right-

hand side vanishes, so that

8tj=—fus(r)8 | @;(#) | 2% . (23)
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The change in the total kinetic energy is therefore
8T, =— [v,(r)8p(r)d®r ,
and Eq. (21) reduces to
8E,= [ 8p(r) [—us(r)+u<r>+f—Ld3r'

(r)
=

4+, [w;plr) |d3r =0, (24)

leading to the final result

v (r)=v(r)+ f —I—’%ld-’*r'_*_,vxc[w;p](r) . (25)
With this potential, Eq, (17) becomes the usual KS equa-
tion, here to be solved self-consistently with Eq. (18).

ITI. CALCULATION OF THE FIRST
EXCITATION ENERGY

For M=2, the ensemble energy, defined in analogy
with Eq. (3), is

S(w)=(1—w)E,+wE, . (26)

If this quantity were known for w=0 and for some other
w <1, the first excitation energy could be obtained by
straightforward subtraction:

E,—E,=[6(w)—6(0)]/w . 27

Alternatively, if &(w) were known for a range of w, the
first excitation energy could be computed by differentia-
tion

E,—E,=déw)/dw . . (28)

The ensemble energy &(w) is the minimum of the func-
tional E,[w;p'], Eq. (16). Explicit expressions for the
right-hand side of both Egs. (27) and (28) can therefore be
obtained by solving self-consistently the KS equations, w
fixed, and then substituting the resulting density p,, (r) for
p’'(r) in Eq. (16).

For Eq. (28), in particular, this program leads to con-
siderable simplification, as we now show. The single-
particle energies ¢;, Eq. (17), are given by

g=t+ [ | @:(r) | 2!(r)d% . (29)

The noninteracting kinetic energy, Eq. (19), can there-
fore be expressed as )

N-1 )
Ts[w;P’]= 2 81+(1—W)EN+WSN+1

i=1

— [P truird® . (30)

For p’=p,, and v, =v,, one then finds, from Eq. (25),
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&(w)=E,[w 3Pw]

N-1- '
=3 g+ (1—weytwey

=1

e PulDpul") o

|r—7'|
— [ PuPvlwip, XN’y +Eywip,] . BD)

Since the derivative of &{w) is needed in Eq. (28), we
now compute the change 8&(w) resulting from a small
change dw:

86(w)=8T,[w;p, 1+ [ v(rdp,(rd’r

fwa(r 8Pw(") d3rd®

+8E  [w;p,] - (32)

8T, [w;pyl=— fus(r)

i=1

N
S 8e:in| 2+ w[8 | oy 1(r)] 2
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The last term on the right-hand side is
BE o[wipy 1= [ viclwip, 18p, (r)d’r

0E,.[w;p]

- Sw ,
dw p=p,

where the partial derivative of E,_ with respect to w is to
be evaluated at fixed density p(r)=p, (7).
The first term on the right-hand side of Eq. (32),

N

i=1
+(tN+1—tN)8w s

is easily evaluated from Eqgs. (23) and (29):

8| on(r 2] |d%

~ [0 @y 11 [ 2= | @n(r) | 218w d®r + (e . —ex )W -

Equation (18) then shows that
BTs[w;pw]=(£N+l_8N)8w_fvs(r)spw(")d3r . (33)
With these transformations, Eq. (32) becomes

3E, [w;p]

86(w)= ey 1 —Ex+ 3 Sw ,

P=p,
and the right-hand side of Eq. (28) can finally be comput-
ed, yielding

3E, [w;p]

E2"‘E1=EN+1_3N+—‘_‘aw pmps (34)

Were the exact exchange-correlation energy known,
then, for any w in the interval 0<w <4, Eqs. (27) and
(34) would yield exactly the same excitation energy.
Since in practice we must rely on approximate forms for
E. . [w;p], the value of E;, —E resulting from Eq. (27) is
different from that resulting from Eq. (34). Accordingly,
considerations of calculational accuracy dictate the
choice of w and of the computational formula. Since the
KS eigenvalues €y . ; and £, are associated with the same
density p,(r), while the equiensemble energies &(w) and
&(0) are associated with the different densities p,(r) and
polr), respectively, and since the KS cigenvalues are
smaller in absolute value than the ensemble energies, the
difference €y ,;—€y can be computed more accurately
than &(w)— &6(0). Equation (34) will therefore produce
more accurate results than Eq. (27), provided that a reli-
able approximation for 3E, [w;p]/0w be available. One
simple expression for this derivative, obtained from the

f
quasi-local-density approximation® for the equiensemble
exchange-correlation potential, is presented in paper III.
Deferring to that paper a more extensive discussion of
Eq. (34) and of its relatlon to the formally similar Slater
transition state expressmn for the excitation energy, we
turn our attention to degenerate ensembles.

IV. DENSITY-FUNCTIONAL FORMALISM
FOR ARBITRARILY LARGE ENSEMBLES,
INCLUDING DEGENERATE STATES

In this section we shall consider ensembles consisting

of the lowest M ecigenstates of the Hamiltonian
B=7"+0+79,
B|\m)=E,|m) (m=12,...,M), 35)

the energies, generally degenerate, being labeled such that
E{<E;< - . (36)

The density matrix defining our ensemble,

M
BMsw)= 3 w,

m=1

|mYmi, 37

is characterized by three parameters, M, g, and w, which
enter the occupation numbers w,, as follows:

1—wg

M_g (38a)

W;=W,= """

=wM —g
and

wM_g+1=wM_g+2="f =wMEw . (38b)



g is an integer satisfying 1 <g <M —1 while w is a real
parameter in the range 0 <w < 1/M. The case w=0 cor-
responds to the equiensemble of M —g states,
wy=w, ="' =Wy _,=1/(M—g), w; 3 _g=0. The
other limit, w=1/M, yiclds the equiensemble of A
states: w,=w,= ‘" =wy=1/M. The parameter w
thus interpolates lincarly between these equiensembles.
This fact becomes most evident when the density matrix
(37) with occupation numbers (38) is written in the
equivalent form

B M50y =(1—wd) | ~—L— S | m)m |
S — —_ E— m m
w w M_gm2=1
1 M
+wM) |—= 3 Im¥m| |. (39)
Mm=1

Now consider the clensity matrix

1 MZe
ﬁM’g(w)’=(1—wM)[ > |m').(m'|}

Al__gln=l

1 M
LS 1mym ] (40)

+ (wiM) M2

constructed from the lowest M eigenstates of the Hamil-
tonian A =T+ 0+ V",

B'|m')Y=E,|m') (m=12,...,M), @1
with energy eigenvalues satisfying
1<Ez< - . , L (42)

Then, for fixed M, g, and w, the densities
J
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p(r)=tr{D M8w)p(r)} 43)
and ,
p'(r)=tr{D ¥8wyp(r)} (44)
are different, ' ‘
plr)=£p'(r) , - 45)

provided the potentials ¥ and ¥’ differ by more than a
constant. X

To prove this statement we first establish the strict in-
equality

g W m | T+0+V|m)

m=1
M
< 3 wAm'|T+0+V |m’), (46
m=1

with the occupation numbers w,, given by Eqgs. (38). This
relation follows from the variational principle of paper 1.
In order to demonstrate that (46) is in fact a strict in-
equality we assume the opposile, i.e., equality of the left-
hand and right-hand expressions in (46). Then part (b) of
the variational theorem of paper I implies that, for
q=M —g and g =M,

[11),]2), ..., |r)ICL|1"), lv2’>,..-, lg')]
CLI,[2)...,]s)]. @D

Here, [ |¥,),..., | ¥ )] denotes the subspace spanned
by the states |4,),..., |, and the labels r and s
(r < ¢ <s5) characterize the multiplet of energy E,:

EISEZS PR SEr'<Er+1= P =E —_ e =ES<IZS+1S s+2s cee

q

The relation (47) allows us to expand the states
[1),12),...,[7)as

- q -
1id=3 A | 'Y (j=1,2,...,7), (48)
m=1
and, similarly, the states | 1'),|2'),..., | g’) as

k=3 By |i) (k=1,2..09). (49)
j=1

"Writing the Hamiltonian A’ as B—(V—¥"), the '

Schrodinger equation (41) reads
[A—(P—-V")]|k'Y=E,|k'),

so that

(P—9") | kY=(H—-E})| k") (k=1,2,...,q9), (50)

Substituting the expansion (49) for | k') on the right-
hand side of Eq. (50) and employing the Schrédinger Eq.
(35), we obtain

(PP k'Y= S (B;—EBy 1) (k=12,...,q) .

j=1

[
Singling out the contribution of the multiplet with en-
ergy E,, we have

(P—P) k)= 3 (E,—ELBy | )"
j=1

+(E,—E;) 3 Byli),
] j=r+1
which, by Eq. (49), leads to
(PP k)= 3 (B;—E{ )by |J)

=1
+(E,—E;) =D By |J)]
i=1
—(E,~E) | k') + 3 (E;—E,)By 1) -
j=1

Finally, by Eq. (48), the states |1), |2),..., |7) are
reexpressed in terms of the states |1'), [2°),..., |¢'),
so that
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PP kY= 3 [6mlE, —E})

m=1
+ ZAE;—E By, | {m')
j=1

(k=1,2,...,q). (51)

Equation (51) implies that the subspace [|1'), |2’}
».--»|g")]is invariant under the action of the operator
(P—P"). Therefore, according to a theorem of linear
algebra, (P —9 ') has eigenstates in [{1'),]2'),...,
|g')]. This is a contradiction to ¥ — ¥ 's4const, since
and V' are multiplicative operators.
tors.

This establishes the strict inequality (46), which, more
compactly, is written as

tr{ D M&w)A} <tr{ D Mw) ) . (52)
A similar chain of arguments leads to
tr{D M&w) A '} <tr{ D M8w)A '} . (53)

Based on these two inequalities, the proof of the HK
statement, p+£p’ for V£V’ + const, proceeds exactly as
in Sec. II. Thus, for fixed M, g, and w, the external po-
tential is uniquely determined by the ensemble density.

In the case of nondegenerate systems, the potential
yields a unique set of lowest eigenstates | 1), [2),...,
| M), so that the ensemble expectation value of an arbi-
trary operator 4, ’

tr{ﬁ”*(w)ﬁ}:%fl.?_g_“z—g(m | 4 |m)
—8 m=1
M

tw 3

(m|4d|m), (59
m=M-—g+1 .
is a unique functional of the ensemble density.
In the presence of degeneracies, the situation is more
complicated. First of all, the “lowest M eigenstates” of a
- given Hamiltonian are determined omnly up to unitary
transformations within the multiplets of degenerate
eigenstates. The expectation value (54) therefore general-
ly depends on the choice of the eigenstates.!? In particu-
lar, there are in general many different densities associat-
ed with a given external potential. Conversely, however,
as demonstrated above, the potential producing a given
density is uniquely determined (up to within a constant).
The intermediate density matrix generated by the
{(unique) potential to reproduce the given density, howev-
er, need not be unique; i.e., we can encounter the follow-
ing situation:!4

D=3 w,|m)m|
m=1

p(r—9P— —p(r), (55)

o M
D= 3 w,|m)m|
m=1

the sets of eigenstates {|m),m=1,2,...,M} and
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{|m),m=1,2,...,M} differing by a unitary transfor-
mation within the multiplets of degenerate states. As a
consequence of this, the ensemble expectation value (54)
of an operator A is in general not a unique functional of
the ensemble density.

The derivation of a variational principle for the ensem-
ble density requires a unique and universal analog to the
functional Flw;p]=tr{D(P+ 0)}, described in Sec. IIL
The construction of this functional for degenerate ensem-
bles follows the extension of the traditional HK theorem
to degenerate ground states:'> we first observe that the
ensemble energy 6= 3¥_,w, E, is independent of the
choice of eigenstates, since unitary transformations
within a multiplet do not affect the energy eigenvalues.
In other words, if the potential 14 corresponding to a
given density p(r) generates different density matrices
and D, as indicated in diagram (55), then these density
matrices yield the same ensemble energy

tr{ DR+ O+ P =tr(D(P+O+P)=6. (56

The value of the ensemble energy (56) is therefore fixed
by the density up to within a constant. Consequently, the
quantity ’

FMe[w;pl=6— [ plrv[pl(r)d3r (57)

is a unigue functional of the density; the ambiguity with
respect to the additive constant in the external potential
cancels out. The functional F¥&[w;p] may now be writ-
ten as

FM8[y;pl=tr{D M8w)( T+ O} , (58)

where D M8(w) is any of possibly many density matrices
generated by the unique potential P that corresponds to
the given density p(r).

The variational principle of paper I then ensures that
the functional

EMew;p']= [ p'(no(r)d’r + F¥8[w;p'] (59)

has the following properties:

. M—z M
E,,M’g[w;p’]>u S E, +w > E,,
M—g m=1 m=M -g41
for p'(r)s£p(r) (60a)
and
. _ Mg M
E.f“*g[w;p]=u S E,+w h E, ,
—8 m=1 m=M—g+1
(60b)

where p(r) is an ensemble density associated with the po-
tential v (7). [In the presence of degeneracies, the rela-
tions (60) are valid for any ensemble density p(r) corre-
sponding to the potential v(r)].

Next, we shall derive a Kohn-Sham scheme. For this
purpose, we define a density functional for the exchange-
correlation energy as
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E8[w;pl=F"4w;pl— T} w;p]

L (rp(r') ;3 3., )
:tffLLlr__r,ldrdr . (61)
The noninteracting Kkinetic energy functional

TM&w;p] is constructed as follows: given the interact-
ing ensemble density p(r), we postulate existence of a lo-
cal single-particle potential f>s such that

p(r)=tr{D ¥8(u)p(r) (62)

is satisfied with a density matrix -

‘l_w M‘ 4
Mg ) ~—WE
D M) Mg E=:1 | m,s ) {m,s |

M
+tw ¥ |m,s){m,s |, (63)

m=M-—g+1

constructed from the lowest M determinantal!® solutions
| m,s ) of the Schrédinger equation

(?+ ?s) | m,s ) ==Ep, | m,s ) (64)
with
E|<E, <E;;<""" . (65)

Once the existence of a noninteracting Hamiltonian
(T+7,) reproducing a given interacting density p(r) is
assumed, unigueness of ¥V, follows from the HK theorem
proven above. However, as before, the intermediate den-
sity matrix generated by the (unique) potential f>s to
reproduce the given density need not be unique, i.c., we
can encounter the following situation

M
D=3 w, |ms){ms|

Lot
~ m=1
p(r)— PV, — " —p(r), (66)
D= % w, |ms){m3|

m=1

where the sets of ecigenstates { |m,s),m =1,2,..., M}
and { | ;5 ),m =1,2,...,M} differ by a unitary trans-
formation within the multiplets of degenerate states.

To define a unique functional T8[w ;p], we follow the
construction of the functional F*#[w;p]: being invari-
ant under unitary transformations among the eigenstates
of a multiplet, the noninteracting ensemble energy
6,=3¥_,w,E,  is fixed by the density up to within a
constant, so that

TMw;pl=6, - [ plriv[pl(r)d’r (67

is a unique functional of the density.

In terms of this functional and the exchange-
correlation functional, Eq. (61), the total interacting en-
semble energy, Eq. (59), is given by

. 2815
EMew;p' |=TM8w;p' ]+ [ p'(ro(r)d?r
+%ff£|'—(;r)_'r(,r|,)d3rd3r’
+EMe[w;p'] . (68)

According to the variational property, Eq. (60),
E}*[w;p'] must be invariant under small changes 8p
around any of the correct minimizing densities p(r) cor-
responding to v (7), i.e.,

BE}E=8TMe+ [ 8p(r)v (r)dr
+ff 8p(r) :,rll)'ds"ds"'

|7 —
+ [ 8p(riweefw;pl(ndr =0, (69)
where
view;p(r)=8EM8[w;p]/5p(r) . (70)

By Eq. (67), the change in the noninteracting kinetic en-
ergy is

8T8=86,— [ 8p(riv,[pl(r)a’r — [ p(r)bu,(r)d®r .

(71)
The variation of the noninteracting ensemble energy,
M
86;= ¥ w,8E, , (72)
m=1

is then computed using first-order perturbation theory,

M
86;= 3 w,{m,s |8P, |m,s)

m=1

=fp(r)8vs(r)d3r , (73)

so that
8TMs=— [ 8p(riv,[p](r)dr . (74)

Equation (69) then reduces to

—vs(l")+u (n+ f P 43,

S8EME= [§
2ee= [ 8p(r) ]

+vieflw;pl(r) |dr =0, (75)

leading to the final result

vs(r)=v(r)+f‘-l—f%d%’-kv%'g[w;p](r) . (76)

With this potential, Eq. (64) yields a generalized KS
scheme, to be solved self-consistently with the density
(62), i.e.,
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plr)= —& 2 (ms|ﬁ(r)|ms)

M
+w 3 (m,s |ptr)|m,s) . an

m=M-g+1

V. CALCULATION OF EXCITATION ENERGIES

In this section, we shall describe the computation of
excitation energies of a given interacting system with
specified external potential. The corresponding energy
spectrum, generally degenerate, will be divided in multi-
plets,

B|ik)=E |ik), k=1,2,...,8 ,

i=123,..., (78

an energy E; and a degeneracy g; associated with the ith
multiplet. The labeling is chosen such that

El <E2<E3<"' . ) (79)

At this point, we have to take a definite choice for the
ensemble parameters, M and g, introduced in the general
formalism of the last section. Since the objectlve is to
calculate the multiplet energies E 1,E2: ..., it is most
convenient to choose M and g in such a way that both the
M-state and the (M —g)-state ensembles contain only
complete multiplets. This guarantees a unique minimiz-
ing density for the variational principle (60) and thus a

unique solution of the KS equations {cf. Ref. 13). The
values to be taken for M are therefore
i
M;=3 g, (80)

*i=1

where I is the total number of multiplets included in the
M-state ensemble. Given M;, the most natural choice
for g is gj, i.e., the degeneracy of the highest multiplet in
the ensemble.”” The parameter w in the density matrix
then interpolates between the equiensembles of M, and
(M;—g;)=M,;_, states:

Diw)=D M”g'(w)

=—— LkY(ik
M;_, 21?31' |
8
4w 'S [ LENIE] . e
k=1

The corresponding ensemble density is given by
pL(r=tr{D {w)p(r)}
1— wg 1 -1 %

= 2 > ok | ptr) | ik)

i=1k=1

g
+w 21‘, {(Lk |pr)| Lk, o (82)
k=1
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and the ensemble energy amounts to
6'(w>=tr{ﬁ ’(w>ﬁ}
1=
T M,

(g1E1+g2E2+ “ gy B )

+wg, E, . (83)

For nondegenerate two-state ensembles, this expression
reduces to Eq. (26). We now wish to show that relations
analogous to Egs. (27) and (28), allowing us to compute
excitation energies from &%(w) or from d 6Xw)/dw, re-
spectively, can be derived from Eq. (83). To this end, we
first consider the special choice w =1/M;, which reduces
&X(w) to the equiensemble energy

el(1/M;)=(g,E,+8,E,+ *

This equation and its analog for I —1 lead to an ex-
pression for the excited-state energy E;:

: +g1E1)/MI . (84)

E;=(M, /g )61 /M) — 6 = (1/M,_})]
+6 Y 1/M;_ ). (85)

Once the lowest I equiensemble energies are calculated,
therefore, the lowest I eigenvalues can be easily obtained.
Equation (85), a generalization of Eq. (27), is of course
implicit in Theophilou’s formalism,’ which provides for-
mal expressions for the equiensemble energies £/(1/M;).

The more general approach described in Sec. III estab-
lishes an important alternative to the calculation of exci-
tation energies. To show this, we differentiate Eq. (83)
with respect to w:

d & w)/dw

=g,[E;—(8,E, +8E,+ - - +gr_1Er_)/M;_].

(86)

Noticing that the second term within the square brack-
ets on the right-hand side is the equlensemble energy
6'-Y1/M,;_,), and substituting Eq. (85) for the first
term in the square brackets, we are led to

M1 /M) — 6111 /M, _ )=(1/M)d 6 (w)/dw . (87)

This shows that if, for i =1,2,...,I, each d&i(w)/
dw |, - —w, IS calculated for some w; in the interval
O<w,;<1/M;, then the equiensemble energies &1/
M, )——reckoned from the ground-state energy E,
—&l=]( 1/g,)—can be easily computed:

61 /M;)— EI—E(I/M YA (W) /dw |y, (88)
i=2

and Egs. (85) and (87) determine the excitation energies
measured from the ground state:

1 dé&’ ‘ &1 dé!
1 {w) . E da&w)

E —E =
! ! g dw w=w; i=2 i dw

w=uw,

(89)
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This is the desired generalization of Eq. (28). If 6X(w)
were known exactly, Egs. (85) and (89) would yield exact-
ly the same excitation energies. In practice, however,
641/M;) and d & (w) /dw can be calculated only approx-
imately. The difference beiween equiensemble energies
on the right-hand side of Eq. (85), a small quantity found
by subtracting two large energies, introduces large rela-
tive errors. Since, as we show next, each derivative
dé&¥w)/dw |, —,, can be determined with the same rela-
tive accuracy as &'(w), Eq. (89) produces significantly
more accurate excitation energies than Eq. (85).

Explicit expressions for &{(w) and d 6Hw)/dw are
found by evaluating the functional

Ellw;p]l=THw ;p:H— fp(r)v (r)d3r

+if ﬁ—ﬂ—”) D g2 ay +ELLwip) 00

at the solution pl(r) of the KS equations and
differentiating it with respect to w. In Eq (90), we have
introduced the abbreviations E/=E, Mpér , TI= TM’ #r
and EL =E, ”gI

We first compute the kinetic contribution, T’ Tw ,pw 1,
to the ensemble energy: in terms of the N—partlcle func-
tions | m,s ) obtained from the KS equation (64), the ex-
act ensemble density is given by

pw(r)———wg!— "2 {m,s | p(r)| m,s)
MI~1 m=1
M,
+w 3 Ams|pr)|ms) . C20)
m=M1_1+1

By assumption, the states | m,s ) are Slater determinants
(cf. Ref. 16), the single-particle orbitals being computed
from

2
A ei<e< o (92)

2 @) =e;@;(r),

and Eqgs. (76) and (91) in self-consistent fashion.
In terms of these orbitals, the density of the Slater
determinant | m,s ) is

(ms 1PN | mys)= 3 fu | 95012, ©3)
Jj=1

where fmj-—O or 1 denotes the occupation number of or-
bital @;(r) in the N-particle state | m,s ). Similarly, the
noninteracting N-particle energies are given by

: Em,s= > fmjej . (94)
=t .

This allows us to rewrite the total density, Eq. (91), and
the kinetic energy, Eq. (67), in terms of the single-particle
orbitals as

—uwgr
M 4

pL(r)= § L vwb; || ;) |2 (95)

Jj=

and
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I I 2 | 1-ws
Ti[w;ppl= 3 YA +wb;
i=1 I—1
—fp{u(r)vs(r)a'?r,, (96)
with
My,
= 2 fmj ' (97)
m=1
and
MI
b= 3 fu 98)
m=M;_,+1

Next, we insert Eq. (96), along with the definition of v (r),

Eq. (76), in Eq. (90), to find

¢lw)= i
: i=

1 —wg,
—a; +wb
M;_,

3 PuirIph(r') 3,
f 7 —r] B0 4% d

— [ oLk lw;pl kNd3r +EL[w;pl,]1. (99

For nondegenerate two-state ensembles, this expression
reduces to Eq. (31). The analysis leading to Eq. (34) final-
ly yields in the general case

d&l(w) & [b 8r n aEic[lU?P]
J

dw =j§ o M;_, % ]ﬁj ow

p=ry
(100)

Equation (100) involves only KS single-particle states
and a functional of the density. Provided that an accu-
rate expression for dEL /dw te employed, d X (w)/dw
can be computed as eas11y and as accurately as the
equiensemble energies. To underscore this point, paper
III proposes a simple approximation for dEZ, /0w and

" computes the excitation spectrum of the He atom, com-

paring the results of Eq. (85) with those of Eq. (100).

To conclude this section, we illustrate the computation
of a particularly simple spectrum where the M; lowest
KS N-particle states correspond to excitations of one par-
ticle from the highest single-particle level ey occupied in
the noninteracting ground state. The total KS energies
then take the form . ‘

N—1
EMS= E 8j+5N—l+m (n'l =1,2,...,
ji=1

M), (101)
and the corresponding N-particle states are given by

' 1
] m,s)=1—/ﬁdeticp1,¢2, e N PN —14m )

(m=1,2,...,M;). (102)

The occupation number f,,; for orbital @; in state | m,s)
then takes the_ form
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{103a)
(103b)

7 1, 1<j<N-—1
™8 N temy JZN

and the coefficients @; and b, entering the general expres-
sions (99) and (100) for the ensemble energy and its
" derivative are readily computed

M; ,, 1<j<N-—1 (104a)
MI—I
= 3 fmy=1{L, N<j<N-—-1+M;_, (104b)
- 0, j>N+M;_, (104c)
g l<jgN-—1 (105a)
M, 0, N<j<N—1+M;_, (105b)
b= 2 w1, N4M,_ <j<N-1+M,
oMt (105¢)
0, i>N+M,. (105d)
The ensemble density, Eq. (95), then reads
N l—wgy V1AM
hN="3 |g)n [+ S e’
ji=1 M;_, j=N -
N—1+M,;
+w T |gn]? (106)
J=N+M;_,

and the ensemble energy (99) and its derivative (100) are
given by

1—wg, V-i+Mi N—1+M;
)= 2 g+—0—— 3 gtw 3 g
M. N J=N+M_,

__ffpw(r)pw(r,)d3rd3r'

| r—r"|

— [ oL vk lwspl Xrd’r +ELw;ph]  (107)
and
d6iw) Vit P 1;»!, .
——— e g, — £
dw J=N+M,_, oM S
ow p=p, "

VI. CONSTRAINED-SEARCH FORMULATION

So far, the density functionals considered were defined
only for (ensemble) v-representable densities. In this sec-
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tion, we shall extend the domain to arbitrary non-
negative functions. For the equiensemble case; a detailed
mathematical analysis, including also a rigorous deriva-
tion of the Kohn-Sham schcme, has been presented by
Hadjisavvas and Theophilou.!® Here, we consider the un-
equally weighted ensemble defined by Egs. (38). For fixed
M, g, and w, the extension of the functional F Melw;p] is
then defined as

FMsw;pl= min (109)

DM’g(w)—vp

tr{D Ms(w) T+ 0} .

The notation D *'#w)—p indicates that the minimum is
searched over the set of all density matrices

5M,g(w>=;l;i"§Mz:g (6, )b |

M
+w p | @ ? (b | (110)

m=M-g+1
{constructed from arbitrary orthonormal N-particle func-
tions |¢y), | @2)s...» |Par?) yielding the prescribed
function p(r) as expectation value of the density operator,
ie.,

p(r)=tr{D M8w)p(r)} . (111)

Similarly, the extension of the noninteracting kinetic
energy functional is given by

TMew;pl= tr{D ¥8w)T} .

Mmin
D, "8(w)—p

(112)

Here, the search is to be carried through over the set of
density matrices

M—g
ﬁ?l,g(w)zl_____l'_u_& ms>< m,s
=7 S 160

M
w3 (113)

m=M—-g+1

I ¢m.s >(ﬁbm,s I

(constructed from orthornormal Slater determinants
| $1s7> -5 | das?) yielding the prescribed function
p(r) as ensemble expectation value, i.e.,

p(ry=tr{D M8w)p(r)} . (114)

In order to show that F ™8 w;p] and T ¥8[w;p] are
well defined by Eqs. (109) and (112), one has to demon-
strate that, for an arbitrary non-negative function p{r),
the set of density matrices yielding p(r) is not empty. To
show this, we refer to the work of Zumbach and
Maschke,!” who constructed a complete set of Slater
determinants, each with a density equal to a prescribed
non-negative function p(#). Inserting these determinants
in Egs. (110) or (113), one immediately obtains an infinite
set of density matrices, each of which yields an ensemble
density equal to the prescribed function p(r).

With Egs. (109) and (112), the extensions of the total
energy functional and the exchange-correlation energy
functional are given by

Eﬂ”g[w;p]=fp(r)v(r)d3r +FMe[y;p] (115)
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E L8 w;pl=F *#w;p]—T*¥w;p]

(r)p(r') , \
__;.f‘fier—’-_,——d%d% . (116)

1—wg Mi*’E :g £ i
— +Jw m = min
M—g m=1 " m=M-—g+1 ‘I¢1)r|¢z)’---:|¢M}j
orthonormal
or
_ M—g M
i__w& Em+w :2 Em
M_g m=1 mn=M-—-g+1

= min tr{D M8w)A},

DMg(1p)
which, alternatively, can be written as
1—wg M2 M
— 3 E,+w 3 E,
M—g m=1 " m=M-—g+1

= 'min
p(r}

{

min
DM-&(w)—p(r)

tr{D M)A} ] .

The definition of the Hamiltonian then enables us to -

write '
1—wg M8 M
— E, +w E,
M—g m2=1 n:=b;2—g+l !
= min [ min  tr{D M8w) T+ 0)}
(PN} | DM&(w)—p(r) :
+ [ptrw(ndr ] .

M-

LS G Bl 4w 3

2819

Finally, one has to assure that the functional
EM#[w;p] provides a variational principle giving the
same minimum as EM&[w ;p]. This is easily demonstrat-
ed using the variational statement of paper I:

(¢ | B |¢0) |,

m=M—g41

(117)

Equations (109) and. (115) finally lead to

—wg M~ M _
— X E,+w ¥ E,=min E¥y;p],
M—g = m=M—g41 {p(n)]}

thus proving that E }*%[w;p] and EM%[w;p] have the
same minimum.
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