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Abstract. W



e describe the optimized effective potential method of density functional theory and
th
�

e semi-analytical approximation due to Krieger, Li and Iafrate. Results for atomic and molecular
syst� ems including correlation contributions are presented and compared with conventional Kohn–
S



ham methods. The combination of the exact exchange energy functional with the correlation energy
fu
�

nctional of Colle and Salvetti works extremely well for atomic systems, while further improvement
is required for molecular systems.
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1. Introduction

Densi
�

ty functional heory (DFT) is a powerful quantum mechanical method for
cal� culating the electronic structure of atoms, molecules and solids [1–3]. The
success of DFT hinges on the availability of good approximations for the total-
e� nergy functional. In this article we shall describe a particular approach to the
c� onstruction of such approximations which involves explicitly orbital-dependent
f
�
unctionals. In order to describe the nature of this approach we will first briefly

review the foundations of DFT.
W
�

e are concerned with Coulomb systems described by Hamiltonians of the type����������� 
Clb ! "#

(1)

wher$ e (atomic units are used throughout this article)%&('*)+, - 1

.0/
1
2 1 2243 (2)

denot
5

es the kinetic energy operator,67
Clb 8 1

2
� 9:;=< >@?

1ACBDFE 1G HJILKNM@OQP (3)
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rR epresents the Coulomb interaction between the particles, andSTVUXWYZ\[
1 ]_^a`Jbdc (4)

cont� ains all external potentials of the system, typically the Coulomb potentials of
th
e

e nuclei.
M
f

odern DFT is based on the celebrated theorem of Hohenberg and Kohn (HK)
[4] which may be summarized by the following three statements:

1. The ground-state density g unih quely determines the external potential ikjl_m nQo asp well as the ground-state wave function qsr tvu . As a consequence, any
obserw vable of a static many-particle system is a functional of its ground-state
densi
5

ty.
2. The total-energy functionalxzy

0
{ | }Q~ : �s����� �Q���J����*��

Clb ���� 0 ����� �v��� (5)

ofw a particular physical system characterized by the external potential � 0 is
equal� to the exact ground-state energy � 0 i

�
f and only if the exact ground-state

densi
5

ty � 0 is inserted. For all other densities ��� k¡ 0 th
e

e inequality¢
0 £¥¤§¦ 0

{ ¨ ©vª (6)

holds. Consequently, the exact ground-state density « 0 andp the exact ground-
state energy ¬ 0 can� be determined by solving the Euler–Lagrange equation­®°¯_±a²´³´µz¶

0
{ · ¸Q¹Lº 0

» ¼
(7)

3. The functional½¿¾ ÀvÁ
: ÂsÃ�ÄsÅ ÆvÇ�ÈÊÉËÍÌÏÎÐ

Clb Ñ�Ò�Ó ÔvÕ�Ö (8)

is universal in the sense that it is independent of the external potential × 0 ofw
t
e
he particular system considered, i.e. it is of the same functional form for all

systems with a fixed particle-particle interaction ( ØÙ Clb i
�
n our case).

The
Ú

proof of the HK theorem does not depend on the particular form of the
pÛ article–particle interaction. It is valid for anyÜ gÝ iven particle–particle interactionÞß

, in particular also for àá â
0,
»

i.e. for non-interacting systems described by
Hami
ã

ltonians of the formäåçæçè�éêÍë�ìíïîñð
(9)

Hence the potential òïóñôaõ´ö is uniquely determined by the ground-state density:÷ùøûúaüÊýÿþ������ ���
	���
��
(10)
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As
�

a consequence, all single-particle orbitals satisfying the Schrödiw nger equation�����
2

2 ������� ���
 �!�"
#%$'&)(�*�+-,/.1032'4)5�6�7 (11)

ap re functionals of the density as well:8'9):�;�<-=?>'@)A B)C
D�EGF�H (12)

The HK total-energy functional of non-interacting particles is given byIKJ�L M�N'OQPSR�T U�VXW�Y
d
5 3 Z G [ � \ � ] � ^ ` _ � a � b � c G d(13)

where$ eSfSg h)i i
�
s the kinetic-energy functional of non-interacting particles:jSkSl m�n'o pq rts

1
lowest uwv�x d

5 3 y�z|{})~ ���
�������'��� 2

2 �����`� ���
������� (14)

W
�

e emphasize that the quantity (14) really represents a f
�
unctional of the density:

functional means that we can assign a unique number ���S� �)� to
e

any function �'���G� .
Thi
Ú

s is done by first calculating that actual potential ���S �¡�¢ whi$ ch uniquely corre-
sponds to £�¤�¥�¦ . Several numerical schemes have been devised to achieve this task
[5–10]. Then we take this potential, solve the Schrödiw nger Equation (11) with it
to
e

obtain a set of orbitals §©¨'ª)«�¬�­¯® andp use those to calculate the number °�± by
²

e� valuating the right-hand side of Equation (14). As a matter of fact, by the same
chai� n of arguments, anyÜ orbital functional is an (implicit)

³
f
�
unctional of the density,

pÛ rovided the orbitals come from a local, i.e. multiplicative potential.
Re
´

turning to the interacting system of interest we now define the so-called
e� xchange-correlation (xc) energy functional byµ

xc ¶ ·�̧ : ¹»º�¼ ½�¾�¿ 1
2 À d

5 3 ÁÃÂ d
5 3 ÄGÅ
Æ'Ç�ÈGÉ
Ê'Ë�Ì3ÍÏÎÐ ÑÓÒÕÔ©ÖØ×ÚÙÜÛSÝSÞ ß)àØá (15)

Th
Ú

e HK total-energy functional (5) can then be written asâäã
0
å æ ç�èêéìëSíSî ï�ðòñôó d

5 3 õ G ö � ÷ � ø � ù 
 ú
0 û � ü � ý S þÿ 1

2 � d
5 3 � � �d

5 3 � � � � � 
 	 � � � 
 � � 
 � � � � � � �� ���������! #" xc $ %'&)( (16)

In historical retrospect we may identify three generations of density functional
schemes which may be classified according to the level of approximations used for
t
e
he universal functionals *,+.- /10 andp 2

xc3 4 516 .
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I
7
n what we call the fi

8
rst generation of DFT, explicitly densi

5
ty-dependent func-

t
e
ionals are used to approximate both 9.:.; <'= andp >

xc3 ? @1A . For example, the simplest
andp historically first approximation of this kind is the Thomas–Fermi model, whereB

xc C D'E is neglected completely and F,G,H I1J is approximated byK TF
LMON P1QSR 3

10 T 3 U 2 V 2 W 3 X d
5 3 Y�ZS[�\^] 5 _ 3 (17)

yi` elding

a TFb
0
c d e'fhg 3

10 i 3 j 2 k 2 l 3 m d
5 3 n^oSp�q^r 5 s 3 t v u d

5 3 w ^ x
0 y � z � { � | 
 } � ~ � �� 1

2 � d
5 3 � � � d

5 3 � � � � � 
 � � � � � � � 
 � � � � � � �� ���!����� (18)

asp approximate expression for the total-energy functional. For functionals of this
t
e
ype the HK variational principle (7) can be used directly, leading to equations

ofw the Thomas–Fermi type. As these equations only contain one basic variable,
namely the density �S���̂ � ow f the system, they are readily solved numerically. The
results obtained in this way, however, are generally of moderate quality.

The
Ú

second� generation ofw DFT employs the ex� act f
�
unctional (14) for the non-

interacting kinetic energy and an approximate density functional for the xc energy:

� KS�
0
c �  1¡£¢¥¤ exact¦ § 1̈©«ªv¬ d

5 3 ­ ^ ®
0 ¯ � ° � ± � ² 
 ³ � ´ � µ · ¶¸ 1

2
� ¹ d

5 3 º ¼ »d
5 3 ½ ^ ¾ � ¿ S À � Á ^ Â � Ã S Ä � Å Ç Æ É ÈÊ ËÍÌÏÎÇÐ�Ñ!ÒÔÓ xc Õ Ö1×)Ø (19)

This total-energy expression leads to the Kohn–Sham (KS) version of DFT [11]
asp will be shown in the following. Plugging Equation (19) into the variational
prÛ inciple (7) yields

0
Ù ÚÜÛÞÝ exactß à á'âãÇä
å�æ�ç è#é 0 ê � ë � ì . í v îd

5 3 ï ^ ð ò ñ S ó � ô Ç õ É ö÷ øÍù!ú�û)üþý ÿ � xc3 � ������
	���
�� (20)

The
Ú

variation of the non-interacting kinetic energy functional is given by��� exact� � ������� ���  1

!#"%$'& (�)+*,-./1032
2

2 45678:9%;=< >�?A@B�C3D#EFGIH
1 J�K=L M�NPORQ d

5 3 SUTWVPXZY [�\A]�̂ _̀WaAbdc�e�fIgih (21)
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wher$ e the one-particle Equation (11) has been used. Since the HK theorem ensures
t
e
he one-to-one correspondence between the density and the one-particle potential,

ap variation j�k ow f the former will result in a variation lUmPn ofw the latter. Therefore,
th
e

e variation of the one-particle energies o�p can� be calculated using first-order
perÛ turbation theory yieldingq`r�s%tvuxw%y'z {�|~} �U�P�%� ���~� �%�'� �������

(22)

Usi
�

ng this result in (21) gives��� exact� � ���d����� d
5 3 � U � � � � � ¡  ¢ � £ A ¤ � ¥ ` ¦ ¨ § = © � ª d « � ¬ � ­ I ®(23)

wh$ ich, combined with Equation (20) leads to�̄°¡± ²�³Á�µ�¶̧ ·º¹
0 » � ¼ U ½ ¡ ¾ À ¿d

5 3 Á U Â Ä Ã 
 Å � Æ ` Ç I ÈÉ ÊÌËÎÍ`ÏxÐ+ÑÀÒ xcÓ Ô Õ�ÖA×�ØUÙ (24)

wher$ e we have defined the xc potential asÚ
xcÓ Û Ü�ÝAÞ�ß�à : áãâ`ä xcÓ å æ�çè�é
ê�ë�ì�í (25)

Being the HK variational equation of the interacting system, Equation (20)
det
5

ermines the exact ground-state density of the interacting system. Since Equation
(24), on the other hand, is equivalent to Equation (20), the densityî
ï�ð�ñ¸ò óô õIö

1÷
lowest ø�ù#ú û%ü'ý�þUÿ�� 2 (26)

reR sulting from the solution of the Schrödiw nger Equation (11) with the potential
(24) must be identical with the ground-state density of the interacting system of
interest. Equations (11), (24), (25) and (26) are known as Kohn–Sham equations. In
prÛ actice, these equations have to be solved self-consistently employing approximate
b
²

ut explicitly density-dependent functionals for � xc � ��� . The resulting scheme is
still easy to solve numerically and – especially for sophisticated density-gradient-
dependent
5

approximations of � xc � 	�
 – gives excellent results for a wide range of
ap tomic, molecular and solid-state systems [2,12].

F
�

inally, in the th
 ird generation of DFT, in addition to the ex� act e� xpression for���
onew also employs the ex� act e� xpression for the exchange energy given by� exact

x � ������� 1
2

������ � ! "$#%&(' )�*
1

+
d
5 3 ,.- d

5 3 /�0214357698;:=<?>A@BDCFE;GIHKJ?LNMDO�P;Q=R?SFT(U9V;WYX[Z\ ]_^a`Ybdc e (27)
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On
f

ly the correlation part of g xc h i�j needsk to be approximated in this approach. In
cont� rast to the conventional second-generation KS scheme, the third generation
ap llows for the treatment of explicitly orbital-dependent functionals for l c ap s well,
gÝ iving more flexibility in the construction of such approximations.

Th
Ú

e central equation in the third generation of DFT is still the KS Equation
(11). The difference between the second and third generations lies in the level of
apprp oximation to the xc-energy. As a consequence of the orbital dependence of m xcÓ
in
�

the third generation of DFT the calculation of n xcÓ o p�qsr;t�u f
�
rom Equation (25) is

somewhat more complicated. A detailed derivation will be given in the following
section for the spin-dependent version of DFT. The result is an integral equa-
tio
e

n determining the xc potential. This integral equation, known as the optimized
e� ffective potential (OEP) equation, is very hard to solve numerically. To avoid a
f
�
ull-scale numerical solution, Krieger, Li and Iafrate (KLI) [13–21] have devised a

semi-analytical scheme for solving the OEP integral equation approximately. This
scheme is described in the subsequent section. After that, some rigorous properties
ow f the OEP and KLI solutions will be briefly discussed and finally numerical results
fo
�

r atomic and molecular systems will be presented.
W
�

e finally mention that a time-dependent generalization of the OEP has recently
b
²

een developed [22] to deal with explicitly time-dependent situations such as atoms
in strong laser pulses [23]. In the linear-response regime this method has led to
ap rather successful procedure [24] to calculate excitation energies from the poles
ofw the frequency-dependent density response. Time-dependent applications of this
kind will not be discussed in the present article. The interested reader is referred to
ap recent review of time-dependent DFT [25].

2.
v

The OEP Method

2.1. DERIVATION OF THE OEP EQUATIONS

W
�

e are going to derive the OEP equations for the spin-dependent version of DFT
[26, 27], where the basic variables are the spin-up and spin-down densities w�xzy;{=|
andp }�~z�;��� , respectively. They are obtained by self-consistently solving the single-
pÛ article Schrödiw nger equations�����

2

2 ���9����� �����������s�;�=�s���F�(���;�����¡ 7¢7£z¤F¥(¦9§;¨�©«ª­¬ 1 ® � ¯ � ¯ � ¯ [ ° ² ± ´ ³µ · ¶ ¹ ¸ » º ? ¼ (28)

where$ ½z¾�¿;À�Á�ÂÄÃFÅÆ ÇKÈ
1 É Ê Ì Ë Î Í � Ï ; Ð � Ñ � Ò2 Ó (29)
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F
�

or convenience we shall assume in the following that infinitesimal symmetry-
br
²

eaking terms have been added to the external potential to remove any possible
de
5

generacies.
The KS orbitals can then be labeled such thatÔ

1 Õ�ÖØ× 2 Ù Û Ú Ý Ü � Ü � Ü 9 Þ Ø ß Y à $ á Y â Û ã ¹ ä = å Î æ $ ç � è1 é ë ê � ì Ý í � í � í  î(30)

The Kohn–Sham potentials ï9ð�ñ�ò;ó=ô may be written in the usual way asõ9ö�÷�ø;ù=ú.ûýü
0 þ ; ÿ � � � ��

d
5 3 � � � � � 
 	 � � � 
 � �� ������������� xc � ��!#"%$ (31)&
'�(#)+* ,-�. /10 2�354
6�7�8 (32)

where$ 9
xc :
;�<�= : >@?BA xc C DFE�GIHFJLKM1NPO
Q�R#S T (33)

The
Ú

starting point of the OEP method is the total-energy functional

U OEPV
0
W X YFZ\[I]\^`_ba cdfe g1h ikjmln o�p 1 q d

5 3 r \ s u tv x w  y � z # { } | � ~1
2 � 2 �����x�m����������

d
5 3 � � �

0 � � � # � � � 
 � � � # � � �� 1
2
� � d

5 3 � � �d
5 3 � � � ¡   
 ¢ � £ # ¤ � ¥ 
 ¦ � § � ¨ � ©ª «�¬�­�®�¯±°²´³ OEP

xcµ ¶¸·�¹mº¼»P½L¾ (34)

wher$ e, in contrast to ordinary spin DFT, the xc energy is an e� xplicit (approximate)
f
�
unctional of spin orbitals and therefore only an implicit f

�
unctional of the spin

d
5

ensities ¿FÀ andp Á\Â . In order to calculate the xc potentials from Equation (33) we
useh the chain rule for functional derivatives to obtainÃ OEP

xc ÄÆÅ�Ç�ÈÊÉÌË�Í OEP
xcµ Î¸Ï�ÐmÑ¼Ò5ÓLÔÕBÖ5×
Ø�Ù�ÚÛ ÜÝFÞ ß1à áãâmäå æ�ç 1 è d

5 3 é � ê I ë B ìOEP
xc í̧ î�ïmðòñ5óLôõ�öø÷xù�ú�û�üþý ÿ�� �������
	��

����������� c.c.� (35)

and,p by applying the functional chain rule once more,
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� OEP
xcµ ������� � !"$#&%(' ) *+-,&.0/ 1 2�34 5 6 1

7
d
5 3 8�90: d

5 3 ;�< <>=
?A@CBED OEP

xcµ FHGEIKJML�N0OP�Q�R�S�T�U
V�W X�Y[Z]\[^�_E`bac�dfe�g>h�iEj j�kml c.c.� npo�qfr�s>t�uEv vbwx
y�z�{�|�}�~ (36)

The last term on the right-hand side is readily identified with the inverse ��� 1�����$���E�b�
ofw the density response function of a system of non-interacting particles���$��� �K�������
�b� : � �(���[����� �¡f¢�£�¤�¥
¦b§�¨ (37)

This
Ú

quantity is diagonal with respect to the spin variables so that Equation (36)
reduces to

© OEP
xc ª�«�¬�­ ® ¯°$±&²(³ ¶́µ�·¸ ¹bº 1 » d

5 3 ¼�½(¾ d
5 3 ¿�À ÀKÁ

ÂAÃCÄEÅ OEP
xc ÆHÇEÈKÉMÊ�Ë0ÌÍ�Î�Ï�Ð�Ñ�Ò
Ó�Ô Õ�Ö[×]Ø[Ù�ÚEÛbÜÝ�Þfß-àKá�â
ã ãbämå c.c.� æèç�é 1ê$ëfì�íEî îðï�ñ�òôó (38)

Acting with the response operator (37) on both sides of Equation (38) one obtainsõ
d
5 3 ö�÷�ø OEP

xcù úAû�üEýbþ ÿ �������	��

����� �������� � ���� �  1

!
d
5 3 " $ # & % 	 'OEP

xc (*),+�-
.0/213,46587:9�;,<>= ?A@6BDC6E�F	GIHJ$K�L�MON�P�QSR c.c.� (39)

Finally, the second functional derivative on the right-hand side of Equation (39) is
cal� culated using first-order perturbation theory. This yieldsTAU:V8W:X�Y,Z>[\$]�^�_O`�a�bdcfehgji kmlno�p

1q�rsOt uwvyx�z�{	|>}�~���h����������8�����,�h� �6�D��������� (40)

Usi
�

ng this equation, the response function�w���j� �����0�
 	¡I¢�£ ¤¥$¦O§�¨ª©�«	¬I­¯®�°�±² ³I´
1 µ � ¶· 8 ¸ º ¹ � » $ ¼ � ½ 6 ¾ 8 ¿ : À � Á � Â Ä Ã (41)

is
�

readily expressed in terms of the orbitals asÅwÆ�Ç�È�É0Ê
Ë	ÌIÍ�ÎÐÏ�ÑÒ ÓIÔ
1 ÕÖ× � Ø

1Ù � ÚÛ O Ü Þ Ý � ßà D á � â � ã $ ä � å w æ h ç � è � é $ ê � ë � ìí h î O ï � ð , ñ I ò � ó : ô 8 õ � ö � ÷ 	 ø > ùú�û8üþý ÿ ��� �
c.c.� (42)
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I
7
nserting (40) and (42) in Equation (39), we obtain the standard form of the OEP

integral equation:���� 	 
 1

�
d
5 3 ��
���� OEP

xc ������������� xc  "!$#�%�&(')')*,+.-"/10�2�3�465�798�:";=<�>.?9@BAC"D=E�F�G(HJI c.c.� K 0
Ù

(43)

where$ L
xc M"N$O�P.Q : R 1SBTU"V$W�X.Y[Z�\ OEP

xc ]_̂�̀�acbedgfhji�k"l=m�n.o (44)

andp p qsr"t1u�vew6x�y�z : { } |~� � �
1� e �� $ � � � � � � $ � � � . � 9 � B �� � � = � � � � � " ����"���������   (45)

The derivation of the OEP integral Equation (43) described here was first given
by
²

Görw ling and Levy [28, 29]. It is important to note that the same expression
results [15, 30–32] if one demands that the local one-particle potential appearing
i
�
n Equation (28) be the o¡ ptimized onew yielding orbitals minimizing the total-energy

functional (34), i.e. that¢�£ OEP¤
0
¥¦�§1¨e©$ª�«.¬=­®¯°± ²�³�´jµ�¶

OE
·

P¸ ¹ 0
Ù º

(46)

This equation is the historical origin [30] of the name o¡ ptimized effective potential.
As
�

was first pointed out by Perdew and co-workers [33, 34], Equation (46) is
equi� valent to the HK variational principle. This is most easily seen by applying the
f
�
unctional chain rule to Equation (46) yielding

0
Ù » ¼�½ OEP¾

0
¥¿�À$ÁsÂ$Ã�Ä.Å�ÆÈÇ6ÉËÊ d

5 3 Ì j Í Ï Î � ÐOEPÑ
0
¥Ò�ÓÕÔ×Ö�Ø�Ù(ÚÜÛ�ÝÕÞ×ß�à�á�âã�ä$åsæ�ç�è�éëê (47)

Once
f

again, the last term on the right-hand side of Equation (47) can be identi-
fied with the KS response function (37). Hence, acting with the inverse response
operw ator on Equation (47) leads to the HK variational principle

0
Ù ìîí�ï OEPð

0
¥ñ�òÕó=ô�õ�öø÷ (48)

2.2.
�

APPROXIMATION OF KRIEGER, LI AND IAFRATE

I
7
n order to use the OEP method derived in the last section we have to solve Equation

(43) for the xc potential ù OEP
xcú û . Unfortunately, there is no known analytic solution for
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xc ý d

5
epending explicitly on the set of single-particle orbitals þ�ÿ���� � . Furthermore,

Equation (43) is not in a form that allows for successive approximations of the xc
pÛ otential. Thus, we need to solve the full integral equation numerically, which is
ap rather demanding task and has been achieved so far only for systems of high
symmetry such as spherical atoms [15, 18, 19, 31, 35] and for solids within the
linear muffin tin orbitals atomic sphere approximation [36–38].

Ho
ã

wever, Krieger, Li and Iafrate [13–21] recently proposed a transformation of
Eq
�

uation (43) that leads to an alternative but still exact form of the OEP equation
whi$ ch lends itself as a starting point for a highly accurate approximation of the
OEP
f

potential. Defining

���	�
���
�� : � �����
1������
�

d
5 3 ���� "!#�$&%�')(+*-,/. OEP

xc 021�3)4+5�687 xc 9�:�;�<>=+?@?BADCFE&G�H)I+JKML�NPORQ)S-T UWVX-Y�Z�[�\
]_^ d

5 3 ` � a c b W de � f � g � h > i + j - k / lOEP
xcú m2n�o>prqDs8t xc u�v�w�x>yrz@z@{}|�~������>��������� (49)

th
e

e OEP integral Equation (43) can be rewritten as���� �+�
1 ������������B������������� c.c.� � 0

Ù  
(50)

Since the KS orbitals ¡>¢�£�¤¦¥ span an orthonormal set we readily conclude from
e� quation (49) that the function §"¨c©�ª�«�¬ is orthogonal to ­�®�¯�°�±�² :³

d
5 3 ´�µ�¶·�¸�¹�º�»B¼�½�¾�¿�À�ÁÃÂ 0

Ù Ä
(51)

The quantity Å}Æ�Ç�ÈÊÉ�Ë>ÌÎÍ�Ï�Ð giÝ ven by Equation (45) is the Green’s function of the
KS
Ñ

equation projected onto the subspace orthogonal to Ò�Ó�Ô�Õ�Ö�× , i.e., it satisfies the
equat� ionØÚÙÛÊÜ�Ý�Þ�ß�àDáRâ)ãcäæå@çéèëêcì&í�î)ï�ð�ñ�òôóöõP÷ùøûú�ü)ýÿþ��������	��

��������������������! (52)

where$ "#
$&%('�)�* is
�

a shorthand notation for the KS Hamiltonian+,(-/.
0�1�2
: 3 5 4 6 2

2
� 798
:&;�< =&>�?A@&BDCFE�G�HJI (53)

Us
�

ing Equation (52), we can act with the operator KJLM
N&OQPSRUT�VXW
onw Equation (49),

leading toY[Z\(]/^�_�`�a	b�ced�fhgFikjl�m
n�o�prq5sutwv OEP
xcx y{z�|�}�~�� xcx ���(���������/�� xcx �������� xcx �����!�������������  (54)
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where$ ¡¢
xc £�¤ denot

5
es the average of ¥ xc ¦(§�̈�© with$ respect to the ª the orbital, i.e.«¬

xc ­�® : ¯�° d
5 3 ±&²�³´�µ�¶�·�¸A¹ OEP

xcx º�»�¼�½�¾À¿�Á�Â�Ã�Ä (55)

andp ÅÆ
xc Ç�È : ÉËÊ d

5 3 Ì�Í�ÎÏ�Ð
Ñ�Ò�ÓFÔ xc Õ�Ö
×�Ø�Ù�Ú	Û�Ü�Ý�Þ�ßJà (56)

Usi
�

ng the KS Equation (28), we can solve Equation (54) for á
â&ã�ä�å�æFçéèê�ë
ì�í�î :ï
ð&ñ(ò�ó�ôFõkö÷�ø�ù�ú�ûýüÿþ���� OEP
xc �����
	���
 xc� �������
�������� xc� ���! #"$ xc� %�&('*),+.-/�021�3
465798;: 2

2 < > = @ ? � A C B E D G FH � I 2 J � K M L O N(57)

The differential Equation (54) has the structure of a KS equation with an additional
inhomogeneity
�

term. Equation (54) plus the boundary condition that PGQR�S2T�UMV t
e
ends

t
e
o zero as WYX Z unih quely determines []\^�_�`�a
b . We can prove this statement by

assumip ng that there are two independent solutions c]de�fhg 1 i�j
k andp lGmn�ohp
2 q�rMs ofw Equation

(54). Then the difference between these two solutions, tvuw�xzy�{
| : }�~]����h� 1 ���
����]����h�
2 ���
� , satisfies the homogeneous KS equation����z���v���h�������v ¡�¢z£�¤
¥§¦ 0

Ù ¨
(58)

wh$ ich has a unique solution©vª«�¬�­�®
̄±°³².́µ�¶2·�̧
¹Oº (59)

if
�

the above boundary condition is fulfilled. However, this solution leads to a
contradiction� with the orthogonality relation (51) so that »v¼½�¾z¿�À
Á can� only be the
tri
e

vial solution of Equation (58),ÂvÃÄ�Å�Æ�Ç
È±É 0
Ù Ê

(60)

Thi
Ú

s completes the proof.
At this point it is useful to attach some physical meaning to the quantity Ë;Ì�Í : from

Equat
�

ion (49) it is obvious that Î;Ï�Ð is
�

the usual first-order shift in the wavefunction
caused� by the perturbing potential ÑMÒÔÓ�Õ×ÖÙØ OEP

xcÚ ÛÝÜ�Þ xc ß�à . This fact also motivates
the
e

boundary condition assumed above. In x-only theory, á xÚ â�ã is
�

the local, orbital-
dependent
5

HF exchange potential so that ä�å�æ is the first order shift of the KS
w$ avefunction towards the HF wavefunction. One has to realize, however, that the
first-order change of the orbital dependent potential ç x è�éëêíìïîñð�òzóõô has

ö
been neglected.

This change can be expected to be small compared to ÷Møúù�û [20].
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Ha
ã

ving found an equation satisfied by ü]ýþ�ÿ������ in
�

which � OEP
xc �	��
�� shows up

ex� plicitly, we may use this identity to further transform the OEP Equation (50). To
th
e

is end we multiply Equation (50) by the KS potential 
�������������� � � 1

� � � � � � � � � �  " ! $ #% ' & � ( � ) � * , + . - ' / � 0 � 1 � 2 � 3c.c.� 4 0
Ù

(61)

andp employ Equation (57) to obtain

0
Ù 576�89 : ; 1

<>=@?
OEP

xc A	B�C�DFEHG xcÚ I'J�K�L�MFN	OQPR xcÚ S'TVUXWY xcÚ Z\[^]`_ba>cd\e�f�g�hFijlk>m 2

2 nporq'sQtvu$wx\y{z�|�}�~����'�{������� c.c.� (62)

Solving this equation for � OEP
xc � yi` elds� OEP

xc ��������� 1
2 ���������V���� ���

1 �>  ¡�¢'£{¤�¥�¦̈ § 2 © ª xc «\¬{­�®�̄.°²±Q³´ xc µ'¶V·X̧¹ xc º'»½¼̀ ¾À¿ÁÃÂÅÄ 2

2 Æ$ÇÈ'É�Ê�Ë�Ì�ÍpÎrÏ'ÐQÑ$ÒÓ'Ô{Õ�Ö�×"ØÚÙ.Û'Ü{Ý�Þ�ß�àâá c.c.� (63)

The second term in the curly brackets may be rewritten by using the KS and the
OEP
f

equation again, leading toã�äå æèç
1 é>ê 2

2 ë$ìí\î{ï�ð�ñ.òpórô'õ�öø÷ù'ú�û�ü�ý"þ ÿ �������	��
 c.c.�
� 
���� � 1

�����
2

2
� ����������! #"%$'&�(�)�*!+-,/.�01�2�3�4!576�8 2

2
� 9;:�<�=�>	?#@�ACB c.c.�

DFEHGJIK LNM
1 OQPSRUT�VW�X�Y�Z![]\_^;`�aJb�c!ded;f c.c.� (64)

In
7

this way Equation (63) may be written asg OEP
xc hji�k!lnm 1

2 oqpsr�t	uwv�xy zN{
1 | } ; ~ � � � � � � 	 � � �2 � �

xc �������	�������� xc �������� xc ���S���S� c.c.� (65)
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with  ¡
xc ¢�£�¤�¥!¦n§Ḧ xc ©�ª�«�¬!­-® 1¯ °'±�²J³�´!µ�¶

2 ·Q¸�¹Uº7»¼�½�¾�¿	À]Á_Â;Ã�Ä�Å�Æ	ÇeÇÉÈ (66)

Equation (65) is an exact transformation of the original OEP integral Equation
(43). The advantage of Equation (65), although still being an integral equation, lies
in the fact that it may serve as a starting point for constructing approximations ofÊ OEP

xc Ë : We only need to approximate Ì�ÍÎÐÏ i
Ñ
n Equation (66) by a suitable functional

oÒ f the orbitals.
The
Ó

simplest possible approximation is obtained by completely neglecting the
t
Ô
erms involving Õ�Ö×ÐØ , i.e. by replacing Ù xc Ú�Û by

Ü Ý
xc Þ�ß . At first sight, this approxi-

mation might appear rather crude. It can be interpreted, however, as a mean-field
apprà oximation in the sense that the neglected terms averaged over the ground-state
spin density áSâ�ã�ä	å væ anish. To demonstrate this, we investigate the quantityç

d
è 3 é�êQë 1

2 ìJíî ïNð
1 ñ U ò 7 óô � õ � ö � ÷ 	 ø ] ù _ ú ; û � ü � ý � þ 	 ÿ e ÿ(67)

whi  ch amounts to the difference between the exact � OEP
xc� ������� andà the approximated

xc potential averaged over 	�

����� . By virtue of the divergence theorem, the integral
can� be transformed to a surface integral. The latter vanishes because ������������ andà�����
 �!�" decr

è
ease exponentially for #%$'& [15]. Hence, the neglected terms have

z( ero average value. The resulting equation, known as the KLI approximation, is
gi) ven by* KLI

xc� +-,�.�/10 1
2
2 35476�8�9 :<;= > ? 1

@ A � B � C � D � E � F H G2 I J
xc K�L�M�N�OQPSRUTV KLI

xc� W�XZYS[\ xc ]�^`_ba`c c.c.� (68)

whi  ch has proved to be an excellent approximation to the full xc potential d OEP
xc e�f�g�h

[15, 18, 19]. We immediately recognize that this form is very similar to the Slater
pi otential.

In
j

contrast to the full OEP Equation (43), the KLI equation, still being an
integral equation, can be solved explicitly in terms of the orbitals kml�n�o5p : multiplying
Equat
q

ion (68) by r sutwv
x�y�zH{ 2 andà integrating over space yields|} KLI
xc� ~w��������xc� �w�����<��� 1� � � 1

� � � � � � � � � � �� KLI
xc� ���Z� 1

2
2  ¢¡£ xc� ¤�¥§¦©¨ªu«

xc� ¬�­`®°¯²± (69)

where  ³´�µ
xc¶w· : ¸ º ¹ dè 3 » ½ ¼¾ u ¿ w À 
 Á � Â � Ã H Ä2Å5Æ7Ç�È�É ÊuËÌ ÍÏÎ

1 Ð Ñ�Ò�Ó
Ô�Õ�ÖH× 2 1
2 ØÚÙ xc Û�Ü
Ý�Þ�ßáàãâuäxc å�æ
ç�è�éêé (70)
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andë ì íïî�ð : ñ ó ò dô 3 õ ½ ö÷ u ø w ù � ú � û � ü H ý2 þ ÿ � � � � � � � � 	 � � 
2��
����	� � (71)

The
�

term corresponding to the highest occupied orbital ������� has
�

been excluded
from the sum in Equation (69) because �� xc ���� "!$#% xc &�')( [15]. The remaining
unkno* wn constants +-,. KLI

xc/ 0�132 1
2 4657 xc/ 8�9�:<;=?>xc/ @�ACBDB arë e determined by the linear equationE�F-G

1H I J 1

KMLDNPORQTS<UPV�WCXZYZ[\ KLI
xc ]�̂ _̀ 1

2
a b6cd xc e�f3gihj�kxc lnmporq

sutZvwyx
xc/ z|{~} 1

2
a �6�� xc�P��������xc/ �P�p�r��� (72)

with� ��� 1 ��������������� 1. Solving Equation (72) and substituting the result into
Eq
�

uation (68), we obtain an explicitly orbital dependent functional.
W
�

e note that the KLI Equation (68) can also be obtained by a less rigorous
der
ô

ivation, namely by approximating the energy denominator in the Green’s func-
t
 
ion (52) by a single constant as was first suggested by Sharp and Horton [30] and

f
¡
urther elaborated by Krieger, Li, and Iafrate [13, 15].

Numer
¢

ical calculations [15, 18, 19] for atomic systems neglecting correlation
e£ ffects have shown that the KLI approximation gives excellent results which deviate
onl¤ y by a few ppm from the much more involved exact solutions of the full OEP
integral Equation (43). Results for diatomic molecules [39] appear to be of similar
q¥ uality. Examples will be presented in Section 3.

2.3.
a

RIGOROUS PROPERTIES OF THE OEP AND KLI POTENTIALS

To conclude this section we will describe (without proof) some exact properties of
t
 
he OEP method and the KLI approximation.¦ Asymptotics: for finite systems, both the full OEP and the KLI potential fall off

asë § 1 ¨)© for ª~«­¬ [15] if the exact expression (27) for the exchange-energy
f
¡
unctional is employed.® Freedom of self-interaction: if the employed xc-energy functional cancels the

self-interaction of the Hartree term, this property is preserved by the KLI
apprë oximation. Thus x-only OEP and x-only KLI schemes are self-interaction
free. It has to be noted, however, that the inclusion of an LDA-correlation-
ener£ gy functional might introduce a self-interaction error again.¯ Derivative discontinuities: an important property of the ex° act xc energy is
th
 

at it exhibits derivative discontinuities as a function of particle number ± atë
integer values of ² . This has important consequences for the values of band
gaps³ in insulators and semiconductors (for a detailed description see e.g. [2]):
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Table I. Various self-consistently calculated x-only results for the Ar atom. All
values in atomic units

OEP KLI B88 xPW91 xLDA´
TOT µ 526.8122 ¶ 526.

·
8105 ¸ 526.

·
7998 ¹ 526.

·
7710 º 524.

·
5174»

1 ¼ ½ 114.4524 ¾ 114.4279 ¿ 114.1890 À 114.1887 Á 113.7159Â
2 Ã Ä 11.1534 Å 11.1820 Æ 10.7911 Ç 10.7932 È 10.7299É
2Ê Ë 8.7339 Ì 8.

Í
7911 Î 8.4107

Í Ï
8.
Í

4141 Ð 8.
Í

3782Ñ
3
Ò Ó Ô 1.0993 Õ 1.0942 Ö 0.8459

× Ø
0.
×

8481 Ù 0.
×

8328Ú
3
Ò Û Ü 0.5908 Ý 0.

×
5893 Þ 0.3418

× ß
0.
×

3441 à 0.
×

3338á
4 â ã 0.1607 ä 0.

×
1616 å 0.0102

× æ
0.
×

0122 ç 0.
×

0014è�é 2 ê 1.4465 1.4467 1.4791 1.4876 1.4889ë�ìîí 1 ï 3.
ð

8736 3.8738 3.8731 3.8729 3.8648ñóò 0 ô 3839.7 3832.6 3847.3 3847.0 3818.7

The correct value õ~ö of÷ the gap is obtained by adding the discontinuity ø xc

of÷ the xc potential to the KS gap, i.e., ùyú3ûýüyþKS ÿ�� xc� . Neither the LDA nor
GGAs
�

reproduce this discontinuity. To date, the OEP and the KLI potential
arë e the only known approximations of � xc� ���	� t



hat reproduce this property of

t


he exact xc potential [15].

3.
�

Selected Results

3.1. ATOMIC SYSTEMS

W
�

e begin with a comparison of x-only results. In an x-only world, the OEP rep-
resents the ex
 act KS potential of DFT and can therefore serve as a standard to
compar� e approximations with.

In Table I we show as a typical example various results for the argon atom
obt÷ ained with different x-only methods. Besides the exact OEP and KLI methods
empl� oying the exact exchange energy functional (27) described above, we also list
results from conventional KS-DFT obtained with the x-energy-functional approx-
i
�
mations due to Becke (B88) [40], Perdew and Wang (PW91) [41] and from the

wel� l-known x-only LDA approximation. The KLI results given in the second col-
u� mn of Table I clearly demonstrate the high quality of the KLI approximation as all
results differ only slightly from the exact OEP ones. For all standard DFT methods,
t


he disagreement is much more pronounced, especially for the highest occupied

or÷ bital energies and even more so for the unoccupied ones.
Extensive calculations for atoms [32, 39, 42] have shown that a suitable cor-

r� elation-energy functional to be combined with the exact exchange energy func-
t


ional in the KLI scheme is the one developed by Colle and Salvetti (CS) [43, 44].

It
�

is given by
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ô 3 .0/21�3547698�:	;0<=?>A@CBEDGF"H�I5JLKNMPO QSRUT VXW�Y	Z$[ 2 \ 1

4
] ^ _a`Xb�c	d$e 2 f

g 1
4 hCikjmlon�p5qsratGuwv�x	y{z 1

4 |w}�~5�s�a�w���5�A����)��� d
ô 3 �0�2���5�0�w���5��X���5�+� (73)

where� �2���5� �
4
] ¡£¢N¤�¥	¦7§N¨G©�ª	«¬w­�®5¯ 2 ° (74)±-²�³	´ µ 1 ¶ ¸ · £ ¹ X º � » 	 ¼ C ½1 ¾ 3 ¿ (75)À9Á�Â	ÃÅÄÇÆwÈ�É5ÊCË 5 Ì 3 exÍ p ÎÐÏ)ÑÓÒXÔ�Õ	ÖC× 1 Ø 3 ÙÚ-Û�Ü5Ý Þ (76)

The
ß

values of constants à , á , â andë ã arë e ä = 0.04918, å = 0.132, æ = 0.2533, ç =
0.349.
è

I
é
n Table II we compare total ground state energies of first-row atoms calculated

self-consistently with various approximations. The first column, headed KLICS,
shows the results from the KLI method employing the exact exchange energy
functional (27) plus the CS-correlation energy functional, while the next columns
show conventional KS results. The latter were obtained with an LDA functional
usiê ng the parametrisation of the correlation energy of a homogeneous electron gas
by
ë

Perdew and Wang [47]; the x-energy functional due to Becke [40] combined
wi� th the c-energy functional of Lee, Yang and Parr [48], denoted as BLYP; and
t
ì
he generalized gradient approximation due to Perdew and Wang [41], referred to

asë PW91. The quantum chemistry values, headed QC, are based on configuration
interaction calculations [45]. The exact non-relativistic energies, i.e. the experi-
mental values with relativistic effects subtracted, have been taken from [46]. The
meaní absolute deviations of the calculated from the exact values, denoted by îï ,
arë e about the same for the KLICS and QC approaches, while they are about twice
asë high for the GGAs and about a factor of 80 higher in the LDA. We emphasize
th
ì

at the numerical effort involved in the KLICS scheme for atoms is only slightly
higher than in the LDA and GGA schemes.
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Table II. Total absolute ground-state energies for first-row atoms from various self-
consistent calculations. Quantum chemistry (QC) values from [45]. ðñ denot

ò
es the

mean absolute deviation from the exact non-relativistic values [46]. All numbers in
Hartrees. Taken from [32] and modified.

KLICS
ó

xcLDA BLYP PW91 QC Exact

He 2.9033 2.8346 2.9071 2.9000 2.9049 2.9037
Li 7.4829 7.3433 7.4827 7.4742 7.4743 7.4781
Be 14.6651 14.4465 14.6615 14.6479 14.6657 14.6674
B 24.6564 24.3525 24.6458 24.6299 24.6515 24.6539
C 37.8490 37.4683 37.8430 37.8265 37.8421 37.8450
N 54.5905 54.1344 54.5932 54.5787 54.5854 54.5893
O 75.0717 74.5248 75.0786 75.0543 75.0613 75.067
F 99.7302 99.1112 99.7581 99.7316 99.7268 99.734
Ne 128.9202 128.2299 128.9730 128.9466 128.9277 128.939ôõ

0.
ö

0047 0.3813 0.0108 0.0114 0.0045

Apar
÷

t from total energies, the highest occupied orbital energies, which should
be
ë

equal to the exact ionization potential in an exact implementation of DFT, are
much closer to the experimental ionization potentials in the KLICS scheme than
in
ø

the conventional KS approaches. This is shown in Table III: all the conventional
KS calculations are inadequate, the numbers are off by about 100% due to the
wr� ong asymptotic behaviour of the xc-potentials in these approximations. Only the
KLICS scheme results in a potential with the correct ù 1 ú�û decay

ô
for large ü .

3.2. RESULTS FOR DIATOMIC MOLECULES

Th
ß

e feasibility of the KLI approximation for more complex systems has been
demonst
ô

rated recently [39] by x-only calculations on diatomic molecules. Some
x-ý only results for the N2 molí ecule are shown in Table IV. Among all the density
functional approaches the KLI scheme yields results closest to the HF values. In
prþ inciple, the density functional results should not be compared with HF but rather
with� exact x-only OEP values. For molecules, however, the latter are not available
yetÿ . From atomic results [18, 19] it is expected that HF and exact x-only OEP
v� alues will agree closely for total energies while the orbital energies are expected
t
ì
o be somewhat different.

It
é

remains to examine the effect of correlation contributions. Therefore, we have
implemented the CS functional (73) for

���
in our fully numerical basis-set-free

c� ode for diatomic molecules, which is based on the X � prþ ogram developed by
Laaksonen, Sundholm and Pyykkö� [50]. The solution of the Kohn–Sham equation
andë the exchange energy integrals are calculated by means of relaxation techniques
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Table III. Ionization potentials from the highest occupied
orbital energy of neutral atoms. �� denotes

ò
the mean absolute

deviation from the experimental values, taken from [49]. All
values in Hartrees. Taken from [32] and modified.

KLICS xcLDA BLYP PW91 Experiment

He 0.945 0.570 0.585 0.583 0.903
Li 0.200 0.116 0.111 0.119 0.198
Be 0.329 0.206 0.201 0.207 0.343
B 0.328 0.151 0.143 0.149 0.305
C 0.448 0.228 0.218 0.226 0.414
N 0.579 0.309 0.297 0.308 0.534
O 0.559 0.272 0.266 0.267 0.500
F 0.714 0.384 0.376 0.379 0.640
Ne 0.884 0.498 0.491 0.494 0.792
Na 0.189 0.113 0.106 0.113 0.189
Mg 0.273 0.175 0.168 0.174 0.281
Al 0.222 0.111 0.102 0.112 0.220
Si 0.306 0.170 0.160 0.171 0.300
P 0.399 0.231 0.219 0.233 0.385
S 0.404 0.228 0.219 0.222 0.381
Cl 0.506 0.305 0.295 0.301 0.477
Ar 0.619 0.382 0.373 0.380 0.579	


0.030 0.176 0.183 0.177

Table IV. X-only results for � 2 with bond length of 2.07 a.u. HF values
from [50]. � tot



2 and� � tot



4 denote the total quadrupole and hexadecapole

moments,� respectively, calculated from the center of mass. All numbers
in atomic units. Taken from [39] and modified.

HF KLI xPW91 xLDA
�

TOT � 108.9936 � 108.9856 � 109.0581 � 107.7560�
1 ��� � 15.6822 � 14.3722 � 14.0717 � 13.8950�
1 �! " 15.6787 # 14.3709 $ 14.0703 % 13.8936&
2 '�( ) 1.4726 * 1.3076 + 1.0014 , 0.9875-
2 .!/ 0 0.7784 1 0.7453 2 0.4611 3 0.44344
3
5 6�7 8 0.6347 9 0.6305 : 0.3927 ; 0.3335<
1 =?> @ 0.6152 A 0.6818 B 0.3478 C 0.3887D tot


2 E 0.9372 F 0.9488 G 1.1962 H 1.1643I tot


4 J 7.3978 K 6.7476 L 6.1809 M 6.2553N

1 OQP�RTS 21.6543 21.6439 21.6921 21.5820

on� a two-dimensional grid. For comparison, we have also performed calculations
emplÍ oying the conventional density dependent xcLDA and PW91 functionals forU

xcV .
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Table VI. Calculated bond lengths of the closed-shell-first-row
dimers and hydrides. HF values taken from [51]. Experimental
values from [52] except where noted. All values in atomic units.

KLICS PW91 xcLDA HF Experiment

H2 1.378 1.414 1.446 1.379 1.401a�
Li2 5.086 5.153 5.120 5.304 5.051
Be2 – 4.588 4.522 – 4.63b

�
C2
� 2.306 2.367 2.354 – 2.3481

N
�

2
� 1.998 2.079 2.068 2.037 2.074

F2
� 2.465 2.669 2.615 2.542 2.6682

LiH 2.971 3.030 3.030 3.092 3.0154
BH 2.274 2.356 2.373 – 2.3289
F
�

H 1.684 1.756 1.761 1.722 1.7325

a� Ex
�

act value from [53].
b
�
From [54].

Table VII. Absolute total ground-state energies of the closed-shell-
first-row dimers and hydrides calculated at the bond lengths given
in Table VI. Estimates for exact values calculated using dissociation
energies from Table VIII and non-relativistic, infinite nuclear mass
atomic ground-state energies from [55]. All numbers in Hartrees.

KLICS PW91 xcLDA Exact

H2 1.171444 1.170693 1.137692 1.174448a�
Li2 14.9982 14.9819 14.7245 14.9954
Be2 29.

�
3197b

�
29.
�

3118 28.9136 29.3385
C
�

2 75.
�

7736 75.8922 75.2041 75.922
N2 109.4683 109.5449 108.6959 109.5424
F2 199.4377 199.5699 198.3486 199.5299
LiH 8.0723 8.0625 7.9189 8.0705
BH 25.2857 25.2688 24.9770 25.29
FH 100.4241 100.4715 99.8490 100.4596

a� Ex
�

act value from [53].
b
�
Calculated at the experimental bond length of 4.63 a.u.

To demonstrate the accuracy of our implementation, we show results for the
neon� atom obtained with our molecular code and compare them with the ones from
our� one-dimensional atomic structure program in Table V. It is obvious from the
t
ì
able that the accuracy of our molecular code is very good, the deviation from the

ex� act results obtained with the atomic code is a few � Hartrees at the most.
W
�

e have calculated the ground-state properties of the closed-shell-first-row
di
ô

mers and hydrides in the approximations mentioned above in a fully self-
consi� stent fashion. As our program uses no basis functions, the results are free
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Table VIII. Dissociation energies of the closed-shell-first-row
dimers and hydrides calculated at the bond lengths given in Table
VI. HF values taken from [51]. All numbers in mHartrees.

KLICS PW91 xcLDA HF Experiment

H2 171.444 167.665 180.270 121.0 174.475b
�

Li2 32.4 33.5 37.9 3.5 39.3c�
Be2 � 10.5a� 15.9 20.6 – 3.8c�
C2 75.6 239.2 267.5 – 232d

�
N2
� 287.3 387.5 427.1 167.5 364.0d

�
F2
� � 22.7 106.7 126.2 � 54.7 62.1d

�
LiH 89.4 86.8 96.9 48.4 92.4d

�
BH 129.3 137.4 145.8 – 135e�
FH 193.9 238.4 259.1 130.8 225.7e�

a� C� alculated at the experimental bond length 4.63 a.u.
b
�
Exact value from [53].

c� F� rom [54].
d
�
From [52].

e� From [56].

Table IX. Absolute values for the highest occupied orbital
energies of the closed-shell-first-row dimers and hydrides cal-
culated at the bond lengths given in Table VI. Experimental
values are the ionization potentials taken from [52]. All num-
bers in Hartrees.

KLICS PW91 xcLDA Experiment

H2
� 0.621563 0.382656 0.373092 0.5669

Li2
� 0.1974 0.1187 0.1187 0.18

Be2
� 0.2560a� 0.1678 0.1660 –

C2
� 0.4844 0.2942 0.2987 0.4465

N
�

2
� 0.6643 0.3804 0.3826 0.5726

F
�

2
� 0.6790 0.3512 0.3497 0.5764

L
�

iH 0.3237 0.1621 0.1612 0.283b
�

BH 0.3692 0.2058 0.2041 0.359
FH 0.6803 0.3567 0.3594 0.5894

a� C� alculated at the experimental bond length 4.63 a.u.
b
�

From [57].

of� basis-set truncation errors. Where available, we have also included HF results
whi  ch, however, were obtained with conventional codes using basis-set expansions.

In Table VI we display results for the bond lengths. It is apparent that the KLICS
scheme results in distances which are generally too short, an effect present in the
HF approximation as well. The LDA and PW91 functionals give values which are
cl� early superior, the latter further reducing the error of the former.
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T
ß

otal absolute ground-state energies calculated at the bond lengths given in
Table VI are shown in Table VII. The exact values for the dimers are from [54], for
t
ì
he hydrides they are calculated by the same method using the exact non-relativistic

gr¡ ound state energies for atoms in [55] and the experimental dissociation energies
in
ø

[52]. For the lighter molecules H2, Li2, Be2, LiH and BH the KLICS and
PW91 results are of the same good quality, yielding errors of a few mHartrees. For
th
ì

e heavier molecules, however, the KLICS results are worse. Being the simplest
apprë oximation, it is not surprising that the LDA gives values for the total energies
wh  ich show the largest errors.

Apart
÷

form H2 aë nd LiH, the dissociation energies as obtained within the KLICS
approachë are disappointing, as may be read in Table VIII. In most cases, the
magnitude is considerably underestimated and for Be2 andë F2 e� ven the wrong sign
i
ø
s obtained. Since the corresponding at¢ omic gr¡ ound-state energies given in the

pþ revious subsection are of excellent quality, the error must be due to correlation
e� ffects present in molecules only. In particular, the left-right correlation error well-
known in HF theory also occurs in DFT when the exact Fock expression (27)
fo
£

r ¤¦¥ i
ø
s employed. Apparently, the error is not sufficiently corrected for by the

Co
§

lle-Salvetti functional. The LDA and PW91 results are clearly much better, the
latter reducing the over-binding tendencies of the former.

Despi
¨

te all of these shortcomings, the asymptotic form of the KLICS xc potential
is of much better quality than that of all the conventional xc-functional approxi-
maí tions. In Table IX we list the absolute values of the highest occupied molecular
or� bital energies. In an ex© act implementation their values should be equal to the
i
ø
onization potentials of the systems under consideration. It is evident that the con-

v� entional KS approaches represented by the LDA and PW91 functionals yield
results which are typically 30 to 40 percent too high, while the KLICS values
arë e much closer to the experimental results. As for atomic systems, this fact may
be
ë

traced back to the correct asymptotic behaviour of the KLICS xc potential for
la
ª

rge « .

4.
¬

Conclusions

Du
­

e to the wealth of exact properties satisfied by the OEP, we argue that this
t
®
hird generation of density functional theory provides a promising basis for further

aë dvances. While the results for atoms are very encouraging, the construction of
cor¯ relation functionals better adapted to correct the left-right deficiency of the exact
e� xchange energy functional is necessary if reliable results for molecular systems
arë e to be obtained.
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