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O. Kün and L. Wöste (Eds.), Springer Series in Chemical Physics 87, Springer, Heidelberg (2007), Chapter 6.5.

The classical picture of chemical bonding in terms of electron pairs that are shared by atoms in order to form
molecules was nicely systematized by G. N. Lewis, in his seminal work entitled “The Atom and the Molecule”1, dated
1916. Lewis noticed the overwhelming evidence pointing to the “pairing” of the electrons, as well as the preference to
close “shells” of eight electrons. Soon afterwards, the pairing of electrons was explained in terms of the Pauli exclusion
principle together with the electronic intrinsic one-half spin, whereas the number eight in fact emanates from both
Pauli’s principle and the spherical symmetry of atoms in a three dimensional world. Lewis, however, was some years
too early, and designed “the theory of the cubical atom”, with the electrons occupying the vertex of a cube (although
he acknowledged the picture to be more methodological than fact-founded), and pointed to a breakdown of Coulomb
law at short distances in order to explain the electron pairs. Despite these exotic suggestions, the usefulness of Lewis
model has persisted even until today’s textbooks.

The reason is that electrons do indeed “localize” in pairs when forming molecules, and a big amount of the basic
machinery of Chemistry is rather well explained with Lewis arguments. In fact, more generally, Chemistry is intuitively
understood in terms of “localized” groups of electrons, either pairs of electrons shared between atoms (“bonds”), non-
bonding pairs of electrons (“lone pairs”), and also larger groups – double, triple bonds –, atomic inner shells, π
electronic systems, etc.

With the advent, in the past years, of sources of coherent light featuring high intensity and ultrafast pulses (in
the femtosecond2, or already below the femtosecond limit3), it has become possible to time resolve the intermediate
steps of chemical reactions – paving the way to the possibility of analyzing and controlling chemical reactions. These
technical advances stress the need of understanding how the electrons rearrange, forming and destroying bonds, in
the midst of a laser pulse, and during the possible ionic recombination. The chemical concepts of bonds, lone pairs,
etc, have to be fathomed also for time-dependent phenomena.

Unfortunately, the transformation of these concepts into a mathematically rigorous scheme for classifying the ele-
ments of the chemical bonding turns out to be astonishingly difficult. The canonical single-particle orbitals that stem
from Hartree-Fock (HF) calculations are not very helpful, since they, typically, have sizable contributions from many
regions in space. Moreover, they are only one possible choice, since unitary transformations within the subspace of
solutions yield equally legitimate orbitals. There are several ways in which one can perform these unitary transforma-
tions in order to obtain localized functions4, but these methods are also not unique, and may result in qualitatively
different information.

In any case, HF is but one of the possible schemes to obtain an approximate solution to the many-body problem.
A definition based on the HF solution would always be affected by the HF error – absence of correlation effects.
It is desirable to have a scheme that does not rely on a particular method. Kohn-Sham (KS)5 density functional
theory (DFT)6–8 also provides single-particle orbitals (in this case unique, except for degenerate ground-states), but
they are usually also very delocalized in real-space. The electronic density is an observable, and thus independent
of the method. Moreover, it contains all the information of the system by virtue of Hohenberg-Kohn theorem9.
Unfortunately, the density itself is not suitable to visualize chemical bonding: It does not peak in the position of the
bonds, it does not show the shell structure of atoms, and lone pairs, also, are poorly represented.

The key to comprehending electron localization is, in fact, Pauli’s exclusion principle, and, relatedly, the Fermi
hole: Bader and collaborators10 demonstrated how all manifestations of the spatial localization of an electron of a
given spin are the result of corresponding localizations of its Fermi hole. An appropriate localization function should
be closely related to this Fermi hole or to an analysis of Pauli’s principle. This is indeed the case for the function
to which we devote this section: Becke and Edgecombe’s electron localization function11 (ELF), as generalized by
Burnus, Marques and Gross for time-dependent cases12. The next subsection will show how the Fermi hole appears
naturally in the derivation of the ELF.

An alternative way to rationalize the ELF definition is to think in terms of how Pauli’s exclusion principle affects
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the kinetic energy. This principle applies to fermionic systems; the kinetic energy of a bosonic system is a lower bound
to the local kinetic energy of a fermionic one13. Thus we can define an excess kinetic energy, which would be the
difference between the two of them. Intuitively, in a region of electron localization (electrons forming pairs, isolated
electrons), their behavior is more bosonic-like. So we will require, to define localization, that the excess kinetic energy
is minimized. This is indeed the case for the ELF, as it will be demonstrated later.

The ELF, as introduced by Becke and Edgecombe, involved two approximations: (i) First, it assumed that the
many-electron wave function is a single Slater determinant. The natural choice is the Hartree-Fock solution. (ii)
Second, it assumed that the single-particle orbitals that form the single Slater determinant, are real functions. This
prevents its validity in a time-dependent formalism, or for static but current-carrying states. A generalized derivation
that lifted this restriction was presented by Dobson14, and later by Burnus, Marques and Gross12 who demonstrated
how this general form could be applied for time-dependent processes. The observation of this function is useful for
the study of chemical reactions and for processes that involve the interaction of molecular systems with high-intensity
ultra-short laser pulses (femtosecond or even attosecond regime), or collision processes between molecules and/or
ions. In this time scale, and for these probably violent deformations of the molecular fields, the electrons are bound to
exhibit a complex behavior: bonds are destroyed or created, bond types change as the molecules isomerize, dissociate,
or recombine in chemical reactions. These events are especially patent in the evolution of the ELF.

Next subsection is dedicated to the definition of the (possibly time-dependent) ELF. In Sect. B, some examples of
the ELF for systems in the ground state are shown, in order to illustrate the association between ELF topological
features and Chemistry bonding elements. Sect. C provides examples of time-dependent calculations in which the
TDELF is monitored: collision processes leading to chemical reactions, and interaction of molecules with laser pulses.
The chapter closes, in Sect. D, with an example in which the coupled evolution of electrons and nuclei, both treated
quantum-mechanical, is computed for a model system. The ELF is then used to learn about the strength of non-
adiabatic effects.

A. The time-dependent electron localization function

1. General definition

We depart from the definitions of the one and two-body density matrices for a system of N electrons15,16, whose
evolution is described by the wave function Ψ(r1σ1, ..., rNσN ; t):
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∑
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The spin-densities are defined in terms of the diagonal one-body density matrix:

nσ(r, t) = Γ
(1)
σ|σ(r|r; t) . (3)

For equal spin (σ1 = σ2 = σ), the diagonal of the two-body density matrix, Γ
(2)
σσ|σσ(r1, r2|r1r2; t), is the same-spin

pair probability function, Dσ(r1, r2; t). Its value is the probability of finding one electron at r1 and another electron
at r2, both with the same spin σ:

Dσ(r1, r2; t) = Γ
(2)
σσ|σσ(r1, r2|r1, r2; t) . (4)

If the electrons were uncorrelated, the probability of finding the pair of electrons at r1 and r2 would be the product of
the individual probabilities: Dσ(r1, r2; t) = nσ(r1; t)nσ(r2; t). Electrons are, however, correlated, and the same-spin
pair density is less than that value by a factor that is defined as the pair correlation function:

Dσ(r1, r2; t) = nσ(r1; t)nσ(r2; t)gσσ(r1, r2; t) . (5)
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The difference between the correlated and the uncorrelated case is also contained in the Fermi hole function
hσ(r1, r2; t):

Dσ(r1, r2; t) = nσ(r1; t) (nσ(r2; t) + hσσ(r1, r2, t)) . (6)

The same-spin conditional probability function, Pσ(r1, r2; t) is then defined as the probability of finding a σ-spin
electron at r2, knowing that there is one σ-spin electron at r1. It can be expressed in terms of the previous definitions:

Pσ(r1, r2; t) =
Dσ(r1, r2; t)

nσ(r1; t)
= nσ(r2; t)gσσ′(r1, r2; t)

= nσ(r2; t) + hσσ(r1, r2; t) . (7)

From this equation, the meaning of the Fermi hole (a negative function at all points) is more transparent: it is a
measure of how probability at r2 is reduced due to the spreading out of the same spin density originated at r1.

However, it will be more useful to define an alternative same-spin conditional pair probability function: given a
reference electron of σ-spin at r, we are interested in the probability of finding a same-spin electron at a distance s.
This involves taking a spherical average on a sphere of radius s around point r, S(s, r):

pσ(r, s; t) =
1

4π

∫

S(s,r)

dSPσ(r, r′; t) . (8)

The integration is done for the r′ variable. For small values of s one can obtain the following Taylor expansion:

pσ(r, s; t) =
1

3

[

1

2

[

∇2
r′

Dσ(r, r′; t)
]

r′=r

nσ(r, t)

]

s2 + O(s3) . (9)

In this expansion, the term in s0 is absent due to the Pauli exclusion principle. The linear term in s is also null17.
The coefficient of s2 (except for the one-third factor) thus tells us about the same-spin pair probability in the vicinity
of r:

Cσ(r) =
1

2

[

∇2
r′

Dσ(r, r′; t)
]

r′=r

nσ(r, t)
. (10)

This function is an inverse measure of localization: it tells us how large the same-spin conditional probability function
is at each point in space. The smaller this magnitude is, the more likely than an electron avoids electrons of equal
spin.

In addition to having an inverse relationship to localization – for example, it is null for perfect localization –, Cσ

is not bounded by above. Visually, it does not mark the chemical structure with great contrast. These reasons led
to Becke and Edgecombe to suggest a re-scaling, noticing that, for the homogeneous electron gas, Cσ is nothing else
than the kinetic energy density (atomic units will be used in all equations of this section):

CHEG
σ = τHEG

σ =
3

5
(6π2)(2/3)n(5/3)

σ . (11)

One may then refer the value of Cσ at each point to the value that the homogeneous electron gas would have for
the density of that point at that time t, CHEG

σ (r; t). Moreover, since there is an inverse relationship between Cσ and
localization, it is useful to invert it. The final expression for the “electron localization function”, ησ(r), is

ησ(r; t) =
1

1 + (Cσ(r; t)/CHEG
σ (r; t))2

. (12)

2. Expression for one-determinantal wave functions

Up to this point, the equations allow for complete generality. Equation (12) in particular, together with (10), defines
the ELF for any system, either in the ground state or in a time-dependent situation, and regardless of which scheme is
chosen to approximate a solution to the many electron problem. However, the ELF was originally introduced assuming
a Hartree-Fock formulation (one determinantal character of the many-body wave function). The formulation may
thus be translated to the Kohn-Sham (KS) formulation of density-functional theory (DFT).
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For one-determinantal wave functions, the function Cσ (10) may be explicitly calculated. Let us assume the Slater

determinant to be formed of the orbitals {ϕi↑}N↑

i=1 and {ϕi↓}N↓

i=1, for spin up and down, respectively (N = N↑ + N↓).
In this case, one can use the two following identities:

Γ(1)(r1σ|r2σ; t) =

Nσ
∑

i=1

ϕ∗
iσ(r2; t)ϕiσ(r1; t) . (13)

(This implies immediately: nσ(r, t) =

Nσ
∑

i=1

|ϕiσ(r, t)|2 .)

Dσ(r1.r2; t) = nσ(r1; t)nσ(r2; t) − |Γ(1)(r1σ|r2σ; t)|2 . (14)

Equations (13) and (14) are then introduced in the expression for Cσ, (10):

Cσ(r; t) =
1

2

[

∇2
r′

nσ(r′; t)
]

r′=r
− 1

2

[

∇2
r′

|Γ(1)(r′|r; t)|2
nσ(r; t)

]

r′=r

. (15)

And after some algebra18:

Cσ(r; t) = τσ(r; t) − 1

4

(∇nσ(r; t))2

nσ(r; t)
− j2

σ(r; t)

nσ(r; t)
. (16)

where τσ(r; t) is the kinetic energy density,

τσ(r; t) =

Nσ
∑

i=1

|∇ϕiσ(r; t)|2 , (17)

and j2
σ(r; t) is the squared modulus of the current density:

jσ(r; t) = 〈Ψ(t)| 1

2m

N
∑

i=1

[δ(r − r̂i)δσσi
p̂i + p̂iδ(r − r̂i)δσσi

] |Ψ(t)〉 =

1

2i

Nσ
∑

i=1

[ϕ∗
iσ(r; t)∇ϕiσ(r; t) − ϕiσ(r; t)∇ϕ∗

iσ(r; t)] . (18)

Expression (16), upon substitution in (12), leads to the general form for the ELF, if one assumes one-determinantal
wave functions. In the original derivation, however, a further restriction was introduced from the beginning: the system
is assumed to be in the a stationary state, and the single-particle orbitals are real, which implies zero current. The
derivation presented above12,18, however, allows for time-dependent Slater determinants (and complex ground-states
with non-null current).

The original, “static” ELF, is simply obtained by eliminating the current term from the expression for Cσ (16):

Cstatic
σ (r) = τσ(r) − 1

4

(∇nσ(r))2

nσ(r)
, (19)

and plugging this formula in the ELF definition, (12).
At this point, it is worth noting that this expression is nothing else than the “excess kinetic energy” mentioned

in the introduction of this Section. The first term, τ(r) (summing over the two spins) is the local kinetic energy of
the electronic system. A bosonic system of equal density n, at its ground state, will concentrate all particles at the
ground state orbital,

√
n/N . From this fact it follows that the second term of the previous equation is the kinetic

energy density of the bosonic system. It is thus clear how the high localization corresponds to a minimization of the
excess kinetic energy.
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3. Density-functional theory approximation to the ELF

It is useful to briefly recall here the essential equations of DFT6–8 and of TDDFT19–24, since these are the theories
that are employed to obtain the orbitals from which the ELF is calculated in the examples presented in the following
subsection.

There exists a one-to-one correspondence between the ground-state density of a many electron system, n, and its
external potential v. This permits to write every observable as a functional of the density. For each interacting
system, there also exists an auxiliary non-interacting system of fermions, subject to an external potential different
to the one in the original system, such that the densities of the two systems are identical. One can then solve this
non-interacting system, and obtain any observable of the interacting system by using the appropriate functional of
the density.

The one-particle equations that provide the single-particle orbitals that conform the one-determinantal solution to
the non-interacting problem are the so-called Kohn-Sham equations:

{−1

2
∇2 + vKS(r)} ϕi(r) = εiϕi(r) , i = 1, ..., N. (20)

The density of both the interacting and non-interacting system is then simply:

n(r) =

N
∑

i=1

|ϕi(r)|2 . (21)

The problem lies in the calculation of the Kohn-Sham potential, vKS(r), itself a functional of the density. For this
purpose, it is usually split into a known and an unknown part – the latter being the so-called exchange and correlation
potential vxc(r):

vKS(r) = v(r) +

∫

d3r′
n(r)

|r − r′| + vxc(r) . (22)

TDDFT extends the parallelism between the interacting and the non-interacting system to time-dependent
systems19. One then has to deal with time-dependent Kohn-Sham equations:

i
∂ϕi

∂t
(r; t) = {−1

2
∇2 + vKS(r; t)} ϕi(r; t) , i = 1, ..., N. (23)

Once again, an approximation to a time-dependent exchange and correlation potential is needed.
The ELF is calculated in terms of spin-orbitals, and is not an explicit functional of the density. One may then

approximate the ELF of the interacting system by considering the ELF of its corresponding Kohn-Sham system
– whose state is a Slater determinant, and can be calculated using the previous equations. Note that this is a
completely different approximation to the one taken by considering the Hartree-Fock ELF – even if it leads to an
analogous expression. However, it has been shown that the main features of the ELF are rather insensitive to the
method utilized in its calculation25,26, even for more approximate schemes such as the extended Hückel model.

B. Examples in the ground-state

This subsection will present some applications of the ELF for systems in the ground state. All calculations have
been done within the KS/DFT formalism. For the exchange-correlation potential, the local-density approximation
(LDA) has been employed in all cases, except for the water molecule and the hydroxide ion, for which – both in
the ground state calculations and in the collision processes presented in the next subsection – the self-interaction
correction was added. The resulting functional is orbital dependent, and in order to calculate it, one has to make use
of the optimized effective potential theory – together, in this case, with the approximation of Krieger, Li and Iafrate27.
The functions are represented on a real-space regular rectangular grid (base-less approach). The pseudo-potential
approach is taken for the ion-electron interaction, and in order to avoid the explicit treatment of the chemically inert
core electrons.39 The motion of the cores is treated classically. The computations have been carried out with the
octopus code28,29.

In order to appreciate the usefulness of the ELF to monitor fast, time-dependent molecular processes, it is important
to learn the characteristics of the ELF in the ground state. Silvi and Savin30 outlined a proposal for the classification
of chemical bonds based on the topological analysis of the ELF. Let us recall here some basic ideas, illustrated below
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FIG. 1: ELF isosurfaces (η = 0.85) of ethane (left), ethene (centre) and ethyne (right).

with some examples. The ELF is a scalar real function, bounded between zero and one – the value one corresponding
to maximum localization. The attractors are the points where it has maxima; to each attractor corresponds a basin, the
set of points whose gradient field drives to the attractor. The shape of the isosurfaces of the ELF is also informative:
as we change the isosurface value, it may or may not change – when it does, we have a bifurcation, which occurs at
ELF critical values. The attractors may have zero, one, or two dimensions: In general, only zero dimensional attractor
are allowed; however system with spherical symmetry (atoms) will have spherical (2D) attractor manifolds, whereas
C∞v (or higher) systems (linear molecules) may have one-dimensional sets of attractors, forming a ring around the
molecular axis.

To each attractor one may associate an irreducible f-localization domain. An f -localization domain is the set of
connected points for which the ELF is larger than f . It is irreducible if it only contains one attractor. The spatial
arrangement of these domains is the key to classify chemical bonds: there are three types of attractors: core (its
domain contains a nuclei), bonding (located between the core attractors of different atoms) and non-bonding (the
rest, that contain the so-called lone pairs). All atoms will have an associated core attractor, except Hydrogen.

In each domain, one may integrate the electronic density, and obtain a number of electrons. In the absence of
symmetry, at most two electrons with opposite spins should be found in a basin. An attractor for which the number
of electrons in its associated domain is less than two is an unsaturated attractor. A multiple bond is created when
ther is more than one bonding attractor between two core attractors. A ring attractor containing six electrons is also
a multiple bond.

A first illustrative example is the clear distinction between the single, double and triple bonds of the ethane, ethene
and ethyne molecules, as presented in Fig. 1. The ethyne (acetylene) molecule is an example of linear molecule (D∞h

symmetry), which allows for continuous ring attractors. These may occur specially for cases in which one expects
a triple bond, such as is the case in acetylene. However, other textbook “Lewis” triple bonds do not show a ring
attractor: the Nitrogen molecule presents only one point attractor between the nuclei, and two other point attractor
at their sides. The double bond of ethene (center in Fig. 1) is clearly manifested by the presence of two attractors
between the Carbons. This leads to isosurfaces with a characteristic “eight” shape. The ethane molecule (left),
presents only one attractor between the Carbons (single bond), and the six domains corresponding to the CH bonds.

It is known that the ring isomer of C20 (see Fig. 2, left side) does not have a 20th order axis of symmetry, due to
the presence of alternating bonds, which reduces the molecule symmetry group to C10h. The different nature of the
bonds (“single-triple alternation”, in the Lewis picture), is clearly patent in the ELF: the continuous ring of attractors
for the triple bonds, whereas one single point attractor for the single bonds. In the case of the C60 fullerene (see
Fig. 2, right side) due to its high symmetry, there are also in principle two possibly different kinds of bonds: the ones
for which the bond line is separating two hexagons, and the ones for which the bond line is separating one pentagon
and one hexagon. A look at the ELF tells us that the character of these bonds is, however, very similar.

The usefulness of the ELF is specially patent for the analysis of non-bonding electron groups31. In Fig. 3 two
examples are shown: the hydroxide (OH−) ion, and the water molecule. In the first case (right), there is once again a
continuous ring attractor, that contains six electrons. This reflects in the torus-like shape of the isosurfaces defined in
its domain. The water molecule, on the contrary, breaks the linear symmetry, and thus does not permit for continuous
attractors. In this case one can see, in addition to two isosurfaces in the CH bond basins, one “bean”-shaped isosurface,
that contains two point attractors on each side of the Oxygen atom. Each irreducible domain, corresponding to each
of these two attractors, contains two electrons.

Figs. 4 and 5 present another case: the formaldimine molecule (also referred to as the smallest imine, or as the
smallest unprotonated Schiff base). This molecules presents a double bond between Carbon and Nitrogen, and a lone
pair attached to the Nitrogen atom. The upper figures of Fig. 4 depict the electronic density: an isosurface on the
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FIG. 2: ELF isosurfaces (η = 0.85) for the ring isomer of C20 (left), and for the C60 fullerene.

FIG. 3: ELF isosurfaces (η = 0.85) of the water molecule (left), and of the hydroxide ion (right), showing the very different
shape of the lone pair basin with four electrons (two point attractors, as it is the case for water), and with six electrons
(ring-shaped attractor, as it is the case for the hydroxide ion).

left, and a logarithmic color map on the plane of the molecule on the right. Below, the figures depict the ELF in the
same way – although the scale of the colormap in this case is not logarithmic. Both the bond (and its type) and the
lone pair are clearly visible in the ELF, whereas the density presents much less structure.

Fig. 5 displays the same formaldimine molecule; however, it shows the gradient lines of the ELF, which converge
in the attractors. This alternative pictorial representation is also helpful to identify the positions of the attractors.

C. Fast processes

The following time-dependent calculations of the ELF have been done by making use of TDDFT to describe the
many-electron system. On top of this, the ions are also allowed to move. These are treated classically as point
particles (the next subsection describes a model in which this restriction is lifted). The forces that define the ionic
movement are calculated through Ehrenfest’s theorem. It amounts to the simultaneous and coupled evolution of both
a classical and a quantum system. The resulting Molecular Dynamics is non-adiabatic, since the electrons may occupy
any excited state, and change these occupations.
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FIG. 4: Electronic density (top) and ELF (bottom, see text for its definition) of the ground state of the formaldimine molecule.
Left figures show one three dimensional isosurface, whereas the right figures show a colour-mapped two dimensional plane.
Note that the scale in the case of the density is logarithmic; the values in the legend reflect the exponent.

FIG. 5: Streamlines running through the gradient field of the ELF of formaldimine, and meeting at the basin attractors – the
ELF local maxima.
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1. The H+ + OH−

→ H2O reaction.

In the following, the TDELF is used to monitor, “in real time”, the chemical behavior of the electrons involved in
a chemical reaction. In this case, a specially simple one: the formation of a water molecule after the collision of a
proton and a OH− group.

One should recall, first of all, the topological differences between the lone-pair basin in the water molecule, containing
two pairs, and the ring-shaped basin of the hydroxide ion (see Fig. 3). The chemical reaction that produces water
should involve the transformation of this lone-pair basin. The collision of the two reactants produces different results
depending on the original velocities and orientations; Two typical outcomes are presented here: a successful event
(meaning formation of water), and an unsuccessful collision, leading to three isolated nuclei.

0fs 3.0fs 6.0fs 9.7fs

13.3fs 15.7fs 18.1fs 20.6fs

23.0fs 24.8fs 27.2fs 30.4fs

FIG. 6: Snapshots taken during the formation of a water molecule due to the collision of a proton and a OH− group. Isosurfaces
for the ELF at a value of η = 0.8 are shown in red. This red color, however, is graduated depending on the local value of
the electronic density: more intense red means higher density. The white areas, thus, correspond to regions of high electronic
localization but low density. The Oxygen core is colored in red, whereas the protons are colored in white.

Fig. 6 shows the first of these two cases. At time zero, one can identify the characteristic ELF of the ground-state
hydroxide ion. Note that this figure depicts isosurfaces of the ELF at a value of η = 0.8, and these isosurfaces are
color-coded: an intense red means a region of high electronic density, whereas the whitish areas of the isosurfaces
correspond to regions of almost negligible density. This is done in order to make apparent one of the less intuitive
features of the ELF: it may have large values in regions of low electronic density.

The proton and the hydroxide group initially approach each other with a velocity of 10−2 a.u., or 0.21 Å/fs. The
proton is directed to the middle point of the ion. As the proton approaches the hydroxide group in the first snapshots,
an accumulation of ELF becomes apparent near it. This corresponds to a small transfer of electronic density – even if
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0.0fs 1.5fs 2.9fs 4.4fs

5.8fs 7.3fs 8.7fs 10.2fs

FIG. 7: Snapshots taken during the collision of a hydroxide ion with a proton, leading to the dissociation of the hydroxide
group.

this density will be strongly localized and very large in size (see that snapshot taken at 9.7 fs), the amount of charge
transfer is minute. This fact may be learnt from the lack of red color in this isosurface.

In the snapshots of the second row, the proton collides with the hydroxide group, and as a result the two protons
jump away off the Oxygen atom. Each proton has now its associated ELF basin, whereas the lone pairs basin
associated to Oxygen is already distorted. The last snapshots in the third row show the return of the protons to the
influence of the Oxygen core, which demonstrates that water has been formed. The very last snapshot, some 30 fs
after the process was initiated, clearly depicts the lone-pairs basin with the typical “bean” shape corresponding to
two electron pairs. Note, however, that both nuclear and electronic degrees of freedom are in highly excited state,
and thus the final picture is not a steady structure.

Fig. 7 shows another possibility, which occurs for higher proton velocities. In this case, the simulation is illustrated
with a different representation procedure: a color map on the plane in which the three atoms move. The initial
geometry is similar, but in this case the relative velocity is 5 10−2 a.u., or 1.1 Å/fs. Once again, the second snapshot
shows how a cloud of localized electrons develops around the proton as it approaches the anion. It becomes specially
large after 2.9 fs; note however that it does not mean a large electronic transfer; to learn about that one needs to look
at the density. In the fourth snapshot, the incoming proton cleanly passes through the bond. The original shape of
the ELF is completely distorted; however the speed of the process did not allow yet for fast movements of the nuclei
– except the straight line movement due to their original velocities.

In the second row one may see the proton scatter away from the anion; it does so at an angle from its initial
trajectory. The bond of the anion is broken; as a consequence the two nuclei separate from each other. Each of the
three nuclei carries away an electronic cloud: a spherical crown in the case of the Oxygen atom (corresponding to the
typical two dimensional spherical attractor of an isolated many electron atom), and spatially large accumulations of
localized electrons for the protons (note, once again, that this does not imply a large number of electrons. In order
to learn about the electronic charge carried away by each of the ions, it is necessary to integrate the density in each
of the localization domains).

2. Proton capture by a lone pair

The next case focuses in the formaldimine molecule, Fig. 5. It presents one lone pair, which chemically may behave
as a possible anchorage for a radical. For example, it may attract a “traveling” proton in an acid environment. This
is demonstrated in the simulation depicted in Fig. 8.
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0fs 11.8fs 23.7fs 35.5fs

43.4fs 47.4fs 51.3fs 56.9fs

59.2fs 63.2fs 67.1fs 71.1fs

FIG. 8: Snapshots taken during the capture of a proton by a formaldimine molecule. Isosurfaces for the ELF at a value of
η = 0.8 are shown in red. The Carbon and Nitrogen cores are colored in green and blue respectively, whereas the protons are
colored in white.

In the first snapshot, the formaldimine molecule is in its ground state, both its electronic and nuclear degrees of
freedom. The topology of the ELF for this particular case was discussed in the previous subsection. A proton travels
with a velocity of 5.2 10−3 atomic units (corresponding to an energy of 0.673 eV), in the plane of the molecule, and
initially aiming to the center of the CN double bond. The lone pair, however, attracts the proton to its basin. As a
result, the proton drifts to the right, in the direction of the Nitrogen atom, accelerating its movement. The molecule
itself also rotates as the Nitrogen atom attempts to approach the incoming proton. This enters the non-bonding basin,
and transforms it into a bonding NH loge. The ensuing collision results in the proton quickly accelerating out of the
molecule; however, the bond has been established, and soon it is driven back. The result is a highly excited molecule:
the nuclei will vibrate, whereas the electronic state will also be a mixture of the ground state and higher lying states.
Of course, eventually it could relax upon photon emission; this is however not included in the model.

3. Bond-breaking by an intense, ultrafast laser pulse

The next example shows the excitation of the ethyne molecule by means of a strong laser. The aim is especially
the triple bond. The laser is polarized along the molecular axis; it has a frequency of 17.15 eV (λ = 72.3 nm) and
a maximal intensity of I0 = 1.19 x 1014W/cm2. Fig. 9 depicts snapshots of the ELF of acetylene in form of slabs
through a plane of the molecule. At the beginning (a) the system is in the ground state and the ELF visualizes these
features: The torus between the Carbon atoms, which is typical for triple bonds, and the blobs around the Hydrogen
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FIG. 9: Snapshots of the time-dependent ELF for the excitation of ethyne (acetylene) by a 17.15 eV (λ=72.3 nm) laser pulse.
The pulse had a total length of 7 fs, a maximal intensity of 1.2 x 1014W/cm2, and was polarized along the molecular axis.
Ionization and the transition from the bonding π to the anti-bonding π? are clearly visible.

FIG. 10: Configuration of the model system: An ion (coordinate R) and two electrons (at x and y) are allowed to move between
two fixed ions (1) and (2), fixed at a distance of 10Å.

atoms. As the intensity of the laser increases, the system starts to oscillate and then ionizes (Fig. 9b,c). Note that the
ionized charge leaves the system in fairly localized packets (the blob on the left in b, and on the right in c. The central
torus then starts to widen (Fig. 9d) until it breaks into two tori centered around the two Carbon atoms (Fig. 9e,f).
This can be interpreted as a transition from the π bonding to the π? non-bonding state. The system then remains
in this excited state, and eventually dissociates, after the laser has been switched off. In the process, the molecule
absorbs about 60 eV of energy, and looses 1.8 electrons through ionization.

D. TDELF for coupled nuclear-electronic motion

The examples presented in the previous subsection neglected the quantum nature of the atomic nuclei. Erdmann,
Gross and Engel32 have presented one application of the TDELF for a model system in which one nucleus is treated
quantum mechanically, and the full Schrödinger equation is computed exactly. This model is specially suited to study,
from a fundamental point of view, the effects of non-adiabaticity. It is instructive to see how the ELF may help for
this purpose.
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The model is depicted in Fig. 10: two electrons and a nucleus that move in a single dimension between two fixed
ions. Its Hamiltonian is:

H(x, y,R) = T (x) + T (y) + T (R) + V (x, y,R) , (24)

where T (x), T (y) and T (R) are the kinetic energy operator of the two electrons and of the moving ion, respectively.
The potential is:

V (x, y,R) =
Z1Z

|R1 − R| +
Z2Z

|R2 − R| +
erf(|x − y|)
Re|x − y|

−Z1erf(|R1 − x|)
Rf |R1 − x| − Z2erf(|R2 − x|)

Rf |R2 − x| − Zerf(|R − x|)
Rc|R − x|

−Z1erf(|R1 − y|)
Rf |R1 − y| − Z2erf(|R2 − y|)

Rf |R2 − y| − Zerf(|R − y|)
Rc|R − y| . (25)

Note that the interactions are screened; The values of the screening are modulated by the parameters Rf (for the
interaction electron – fixed ions), Rc (for the interaction electron – moving ion), and Re (for the electron – electron
interaction). By tuning these parameters, the non-adiabatic couplings may be reduced or enhanced33–37.

The degree of diabaticity is qualitatively pictured in the adiabatic potential energy surfaces (PES) – which show
the eigenvalues, parameterized with the nuclear coordinate R, of the electronic equation:

{T (x) + T (y) + V (x, y,R)}φστ
n (x, y;R) = V στ

n (R)φστ
n (x, y;R) , (26)

so that φστ
n (x, y;R) are the electronic eigenfunctions in state n. Two different initial configurations are possible: the

two electrons are in the same spin state – corresponding to spatial functions of gerade symmetry –, or in opposite
spins – corresponding to ungerade spatial functions. (Note that since the full Hamiltonian does not contain the spin,
the system will remain in the same spin configuration during any evolutions). The adiabatic PES are depicted in
Fig. 11 for the anti-parallel spin (top) and parallel spin (bottom) cases, and for the ground state, and the first three
excited states.

In the anti-parallel case, the ground state and the first excited state show an avoided crossing, so we should expect
clear non-adiabatic behavior in that region. In the parallel spin case, however, the ground state and the first excited
state are well separated from each other and from the higher states, whereas the second and third excited states again
show avoided crossings.

The localization functions for this particular model have to be defined. The full time-dependent density matrix is
given by:

Dστ (x, y,R; t) = |Ψ(xσ, yτ,R; t)|2 , (27)

where Ψ is the full wave function. Integrating out the nuclear degree of freedom, one obtains the density matrix for
the two electrons:

Dστ (x, y; t) =

∫

d3R Dστ (x, y,R; t) , (28)

and one may then define the conditional pair probability function:

Pστ (x, y; t) =
Dστ (x, y; t)

ρσ(x; t)
, (29)

where ρσ is the electronic one-particle spin-density. Two cases have to be distinguished:

1. Anti-parallel spins: Pαβ(x, x; t) is the conditional probability to find one electron at time t at point x, if we
know with certainty that other electron with opposite spin is in the same place. This is an indirect measure
of localization. One may define, in analogy to the usual ELF, a time-dependent anti-parallel spin electron
localization function (TDALF), ηap, as:

ηap(x; t) =
1

1 + |Pαβ(x, x; t)/Fα(x; t)|2 . (30)

Fα(x; t) = (4/3)π2ρ3
α(x; t) is the Thomas-Fermi kinetic energy density for anti-parallel spins and 1D systems.
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FIG. 11: Adiabatic potentials for the anti-parallel (top panel) and parallel spin case (bottom panel). Different parameters
were used in the parametrization of the interaction energy: Rc = Rf = 1.5 Å; Re = 2.5 Å(left panel), and Rc = Rf = Re =
1.5 Å(right panel).

2. Parallel spins: This would correspond to the usual ELF, presented previously. However, the one-dimensionality
of the model changes the derivation since the spherical average is not necessary. Defining s = x − y, one may
expand Pαα(x, s; t) in a Taylor series up to second order around s = 0:

Pαα(x, s; t) =
1

2

∂2Pαα

∂s2
(x, 0; t)s2 + O(s3) . (31)

The constant term is null due to Pauli’s principle, whereas the linear term also vanishes since, according to
Kato’s cusp theorem38, the wave function is proportional to s. The s2 coefficient, aαα(x; t), is now used to
define the TDELF with the usual re-normalization precautions:

η(x; t) =
1

1 + |aαα(x; t)/Fα(x, t)|2 . (32)

In this case, Fα(x) = (16/3)π2ρ3
α(x).
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The nuclear movement is investigated through the time-dependent nuclear density:

Γστ (R; t) =

∫

d3x

∫

d3y Dστ (x, y,R; t) . (33)

The time-evolution of the system is then initiated from an initial state with the form:

Ψ(xσ, yτ,R; t = 0) = e−γ(R−R0)
2

φστ
n (x, y;R) , (34)

that is, from the first electronic excited state, and from a Gaussian nuclear distribution around some initial point –
in this case, R0 = −3.5 Å.

Once again, two possible spin configurations for the initial state have to be distinguished:

1. Anti-parallel spins.

This case is shown in Fig. 12, left side. The top graph represents the nuclear time-dependent density. This
density, initially localized around -3.5 Å, travels towards its turning point, while it strongly disperses. Soon, as
a consequence of the strong non-adiabatic coupling, the nuclear wave packet becomes extremely broad and a
defined structure can no longer be seen.

The electron density (middle panel) seems to be unaware of the nuclear motion. This does not mean that
electrons are static; its behavior may be best analyzed by looking at the TDALF (lower panel). We have two
localization domains, which correspond also with the initial areas of high density. It may be seen how, as the
nucleus transverses this area, the localization amplitude diminishes, and almost vanishes for those two areas.
This illustrates how the strong non-adiabatic coupling is effective in decreasing localization.

2. Parallel spins.

This case is shown in Fig. 12, right side. Also, the nuclear time-dependent density is on the top and the time-
dependent electron density is in the middle, although in this case it is the usual TDELF (parallel-spins) which
is shown in the bottom panel.

This case has been tailored to avoid the presence of non-adiabatic effects (the first excited state is well separated
from the others). As a result, with the chosen initial conditions, the motion takes place exclusively in a single
electronic state. The nuclear wave packet is initially localized in the left half of the potential well, and starts
moving to the right side where it is repelled by the right side fixed ion at about 40 fs. The wave packet then
shows an oscillatory structure, and broadens due to the anharmonicity of the potential.

The electronic density reflects a charge transfer from the left fixed ion to the right one, with the moving ion
acting as an “electron carrier”. Initially, there are two maxima in the vicinity of the left fixed ion and on the
moving one. After the nucleus crosses the origin, the initial density drops to zero and the new two maxima are
on top of the moving ion and on the right side. If the nucleus were not affected by dispersion, the process would
reverse with each half-cycle of the nuclear vibration.

The behavior of the TDELF is now very different with respect to the TDALF in the anti-parallel spin case.
The localization remains high at all times, and the transfer of electrons from left to right is clear: Initially there
are two localization domains; one around the fixed ion, and another near the origin. As the nuclear movement
starts, the first domain vanishes, and a third domain appears near the right fixed ion. After the vibrational
period of the nucleus is finished, this third domain disappears, and the initial ELF is however restored. The
vanishing of the first domain and the appearance of a third domain indicates that one electron must have been
removed from the left fixed nucleus and dragged to the right.

In conclusion, the handful of examples presented in this section illustrate the amount of information that can be
gained from the time-dependent ELF in theoretical studies of ultrafast phenomena. One can learn about the time
scales of the processes, and/or about how the various sub-events that make up a complex reaction are ordered in time:
which bonds break first, which second, how the new links are created, etc. One can observe and interpret intermediate
electronic structure that may be short lived but relevant for the overall outcome. This information starts to become
available to experimentalists, as the time resolution of the sub-femtosecond laser sources increases.
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Anti-parallel spin Parallel spin

FIG. 12: Quantum dynamics of the model system presented in Sect. D, for the anti-parallel spin (left) and the parallel spin
cases (right). The upper panel shows the nuclear density. The time-dependent electron density and TDELF are shown in the
middle and lower panels, respectively.
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