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Correlation potentials for molecular bond dissociation within
the self-consistent random phase approximation
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Self-consistent correlation potentials for H2 and LiH for various inter-atomic separations are obtained
within the random phase approximation (RPA) of density functional theory. The RPA correlation
potential shows a peak at the bond midpoint, which is an exact feature of the true correlation potential,
but lacks another exact feature: the step important to preserve integer charge on the atomic fragments
in the dissociation limit. An analysis of the RPA energy functional in terms of fractional charge is
given which confirms these observations. We find that the RPA misses the derivative discontinuity at
odd integer particle numbers but explicitly eliminates the fractional spin error in the exact-exchange
functional. The latter finding explains the improved total energy in the dissociation limit. © 2012
American Institute of Physics. [doi:10.1063/1.3676174]

I. INTRODUCTION

The random phase approximation (RPA) in Kohn-Sham
(KS) density functional theory (DFT) has in recent years re-
ceived considerable attention in quantum chemistry1–3 and
material science.4–11 The RPA incorporates exchange ef-
fects exactly and the correlation energy is treated non-
perturbatively by summing a subset of polarization diagrams
to infinite order.12, 13 Furthermore, the RPA can be systemat-
ically improved being the first approximation within the so-
called adiabatic connection fluctuation dissipation (ACFD)
framework.14–16

The RPA is an implicit functional of the density and
can therefore include non-local correlation effects, e.g., the
van der Waals interactions. That these are, indeed, accurately
captured by the RPA has been demonstrated in many recent
works.17–19 For systems described by strong Hubbard-like
correlations, the RPA is, however, still not fully investigated.
A popular test case in this regard is the dissociation of di-
atomic molecules with covalent bonds.20 All density func-
tional approximations constructed so far fail in this context,
if proper spin-symmetry is enforced. The total energy in the
dissociation limit is too high and spurious fractional charges
are found at the fragments.

The large error in the total energy has been character-
ized as static correlation error or so-called fractional spin er-
ror, studied in detail in the pioneering works of Cohen, Mori-
Sànchez, and Yang.21–23 It has been demonstrated that the
RPA strongly improves the dissociation limit for homoatomic
systems such as the H2 molecule.24–27

Spurious fractional charges, on the other hand, appear
only in the dissociation limit of heteroatomic molecules and
are related to an incorrect behavior of the total energy as
a function of particle number. The exact energy functional
exhibits a kink or derivative discontinuity at integer parti-
cle numbers along with a straight line behavior between the
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integers.28 The smooth and nonlinear behavior of approxi-
mate functionals leads to charged fragments in the dissoci-
ation limit, meaning that one electron is too delocalized, i.e.,
spread over both fragments. This error is known in the liter-
ature as delocalization error or fractional charge error.22, 23, 29

The delocalization error of the RPA has been studied only for
the dissociation of open-shell H+

2 and He+
2 .30 It was found to

be rather severe leading to too low total energies. Whether
the RPA suffers from fractional charge error in the cases of
heteronuclear molecules is presently unknown.

The exact functional ensures neutral dissociation frag-
ments by virtue of the KS potential.31–33 In the dissociation
limit, the highest occupied orbital of each of the fragments
must be aligned (or degenerate). Consequently, the highest
occupied molecular orbital (HOMO) of the whole system (in-
cluding both fragments) is a linear combination of the orbitals
of each fragment. To obtain equal weights, i.e., integer charge,
at the fragments the KS potential exhibits a sharp step at the
bond midpoint, shifting the energy levels of only one of the
fragments. This feature is a direct consequence of the deriva-
tive discontinuity in the correlation part of the energy.34, 35

Another feature of the exact KS correlation potential of disso-
ciated molecules is a peak at the bond midpoint.36 The peak
emerges with increasing inter-atomic distance, and acts to fur-
ther localize the electrons.

The RPA correlation potential for atoms was recently
obtained37, 38 and showed a close resemblance to the ex-
act correlation potential. However, all RPA calculations on
molecules have so far been carried out using potentials origi-
nating from other functionals and hence precluding a full as-
sessment of the RPA. The aim of this work is to provide a
more complete analysis of the RPA. To this purpose, we have
calculated self-consistent RPA potentials for molecules and
investigated the RPA correlation potentials for H2 and LiH
at different inter-atomic distances. These systems allow us to
study both the static correlation error and the delocalization
error. Moreover, the LiH is an example where a self-consistent
calculation is essential. We have also analyzed the RPA
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energy functional in terms of fractional charge by studying the
RPA functional on an extended domain of spin-compensated
densities allowing for non-integer number of particles.

We conclude that the RPA potentials exhibit the peak at
the bond midpoint but lack the step feature, where the lat-
ter is related to a missing intra-shell derivative discontinuity.
The total energy of LiH is, however, still largely improved in
the dissociation limit as compared to, e.g., the exact-exchange
(EXX) functional, suggesting only a smaller delocalization
error.

II. RPA CORRELATION ENERGY AND POTENTIAL

Within the ACFD framework the exact correlation energy
is written as39–41

Ec = i

2

∫ 1

0
dλ

∫ ∞

−∞

dω

2π
Tr {v[χλ(ω) − χs(ω)]}, (1)

where χ s is the non-interacting KS density response function
and χλ is the scaled interacting density response function. The
scaling refers to a system with a linearly scaled Coulomb in-
teraction λv(r, r′) plus a fictitious potential which keeps the
density fixed as λ is changed. The parameter λ runs between
0 (non-interacting KS case) and 1 (fully interacting case). We
have used the shorthand notation Tr fg = ∫

drdr′f(r, r′)g(r′,
r) for any two-point functions f and g. Within TDDFT, the
function χλ reads42

χλ = χs + χs

[
λv + f λ

xc

]
χλ. (2)

The scaled XC kernel f λ
xc is defined as the functional deriva-

tive of the scaled XC potential vλ
xc with respect to the density

n, evaluated at the ground state density.
In the RPA, f λ

xc = 0 and thus corresponds to the simplest
approximation within the ACFD formalism. Within the RPA,
the λ-integral in Eq. (1) can be evaluated analytically with the
result

Ec = − i

2

∫
dω

2π
Tr {ln[1 − vχs] + vχs}. (3)

Diagrammatically, Eq. (3) is equal to an infinite summation
of ring-diagrams.

The RPA correlation potential vc can be obtained as the
functional derivative of Eq. (3) with respect to the density. If
we let Vs signify the total KS potential, Gs the non-interacting
KS Green function, and χ s = −iGsGs, the functional deriva-
tive can be obtained via the chain rule

nc ≡ δEc

δn

δn

δVs

= δEc

δGs

δGs

δVs

. (4)

The result is the well-known linearized Sham-Schlüter
equation,43, 44

∫
χs(1, 2)vc(2)d2 =

∫
�(3, 2; 1)�c(2, 3)d2d3. (5)

Here, we have used the notation (r1, t1) = 1, etc. and intro-
duced �(3, 2; 1) = −iGs(3, 1)Gs(1, 2). The correlation part
of the self-energy �c in the RPA is given by

�c = i
δEc

δGs

= ivχRPAvGs, (6)

where

χRPA = χs + χsvχRPA. (7)

In the Appendix, we show the expression for nc, i.e., the
right-hand side of Eq. (5), in terms of KS orbitals and KS
eigenvalues.

III. FRACTIONAL CHARGE AND SPIN

The RPA functional produces accurate dissociation en-
ergies for H2, in contrast to all common density function-
als which yield a far too high energy due to a spurious self-
interaction in the H fragments. It is well known that EXX is
self-interaction free in the case of a spin-polarized H atom.
In the dissociation limit of H2, the H atoms are, however, not
spin-polarized, but rather described by a mixture of a spin-up
and a spin-down H atom, in which case EXX does suffer from
self-interaction. To obtain the correct dissociation limit, a sig-
nificant correlation contribution is thus needed. In the follow-
ing, we will show that the RPA correlation functional exactly
cancels the error in the EXX functional in the dissociation
limit. The total energy will still not be exact as the correlation
energy contains a self-correlation term, which does not vanish
in the dissociation limit.

A. RPA in the dissociation limit

The RPA energy is an explicit functional of the KS Green
function Gs and for spin-compensated systems, Gs is propor-
tional to the identity matrix in spin-space. In the frequency
domain, a spin-component of Gs reads

Gs(r, r′, ω) =
occ∑
k

G−
k (r, r′, ω) +

uocc∑
k

G+
k (r, r′, ω), (8)

where we have defined

G±
k (r, r′, ω) = ϕk(r)ϕk(r′)

ω − εk ± iη
, (9)

with ϕk being a KS spin-orbital and εk the corresponding
eigenvalue. Consider now a stretched homonuclear diatomic
molecule composed of atoms A and B. For large but finite
inter-atomic separation R, the molecular KS orbitals can ap-
proximately be written as symmetric and anti-symmetric lin-
ear combination of the atomic KS orbitals,

ϕk(r) = 1√
2

[
ϕA

k (r) ± ϕB
k (r)

]
, (10)

where ϕA
k (r) is a KS orbital of atom A. This expression be-

comes exact as R → ∞. It is easy to show that in the dissoci-
ation limit

ERPA[Gs] → ERPA
[
GA

s

] + ERPA
[
GB

s

]
, (11)

where

GA
s =

occ∑
k �=0

G−
k +

uocc∑
k �=0

G+
k + 1

2

[
G+

0 + G−
0

]
. (12)

Here, GA
s contains only states of the isolated atom A. The or-

bital k = 0 is the special orbital of the highest occupied state
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which has to be considered partially occupied and partially
unoccupied. For a homoatomic system, the fraction is always
1/2.

In the case of a covalent bonded heteronuclear diatomic
molecule, a similar analysis can be carried out. The only dif-
ference is that now only the highest occupied and lowest un-
occupied arise from a degeneracy of the isolated atoms. Due
to the lack of symmetry, we also have to allow for a more
general linear combination of KS orbitals,

ϕLUMO
0 (r) = 1√

2

[√
pϕA

0 (r) −
√

(2 − p)ϕB
0 (r)

]
, (13)

ϕHOMO
0 (r) = 1√

2

[√
(2 − p)ϕA

0 (r) + √
pϕB

0 (r)
]
, (14)

where p ∈ [0, 2]. The KS Green functions to be inserted in
Eq. (11) become

GA
s =

occ∑
k �=0

G−
k +

uocc∑
k �=0

G+
k + p

2
G+

0 + 2 − p

2
G−

0 , (15)

GB
s =

occ∑
k �=0

G−
k +

uocc∑
k �=0

G+
k + 2 − p

2
G+

0 + p

2
G−

0 . (16)

In the exact system, the energy assumes its minimum at p = 1.
This is, however, not guaranteed using an approximate func-
tional. In fact, most functionals yield a so-called fractional
charge error on the atomic fragments (i.e., the minimum is
found at p �= 1).

B. Fractional charge

In this section, we derive an expression for the RPA
correlation energy in terms of fractionally charged spin-
compensated systems. To this end, we consider ensembles of
the following form:

γ̂ < = (1 − p)|0 〉〈 0| + p

2
(| ↑ 〉〈 ↑ | + | ↓ 〉〈 ↓ |) (17)

for p ∈ [0, 1),

γ̂ > = 2 − p

2
(| ↑ 〉〈 ↑ | + | ↓ 〉〈 ↓ |) + (p − 1)| ↑↓ 〉〈 ↑↓ |

for p ∈ (1, 2], (18)

where |0〉 refers to the ground state of N0 even number of elec-
trons, |↑↓〉 refers to a spin-compensated (N0 + 2)-state, and
|↓〉(|↑〉) a spin-down(up) polarized state with N0 + 1 elec-
trons. The definition of the non-interacting spin-up G↑

α and
spin-down G↓

α Green functions are

G↑
α(rt, r′t ′) = 〈α|T {ψ↑(rt)ψ↑(r′t ′)†}|α 〉, (19)

G↓
α(rt, r′t ′) = 〈α|T {ψ↓(rt)ψ↓(r′t ′)†}|α 〉, (20)

where α can be any of the states |0〉, |↓〉, |↑〉, or |↑↓〉 in the
KS system. Here, T is the time-ordering operator and ψβ(rt)
is the field operator with the property of adding ψβ(rt)† or

removing ψβ(rt) an electron with spin β in r at time t. Evalu-
ating the Green functions as ensemble expectation values us-
ing Eqs. (17) and (18) we find Green functions exactly of the
form as in Eqs. (15) and (16). Thus, the ensembles proposed
correspond to how an atom in the RPA is described in the dis-
sociation limit.

The RPA correlation energy is usually evaluated using the
time-ordered KS response function χ s. Using the ensemble
Green functions, we find

χE
s (r, r′, ω) = −iπδ(ω)p(2 − p)|ϕ0(r)|2|ϕ0(r′)|2

+χ̃p
s (r, r′, ω), (21)

where

χ̃p
s (r, r′, ω) = 2

∑
q

fq(r)fq(r′)
ω − εq + 2iη

− fq(r)fq(r′)
ω + εq − 2iη

, (22)

and we have performed a spin summation. The orbitals ϕk are
now referring to the orbitals of an isolated atom. The index q
= (k, k′) is a composite index of occupied (k) and unoccupied
(k′) states. The special transition q = (0, 0) is excluded since
it has been taken out explicitly (first term in Eq. (21)). The
functions fq(r) = ϕk(r)ϕk′(r) are called excitation functions
and we note that when ϕ0 is occupied it should be multiplied
by

√
p/2 and when it is unoccupied it should be multiplied

by
√

(2 − p)/2. When calculating the correlation energy, the
interacting RPA response function has to first be evaluated
χE

λ = χE
s + λχE

s vχE
λ . The final expression of the RPA corre-

lation energy reads

Ec = −p(2 − p)

4

∫
drdr′|ϕ0(r)|2v(r, r′)|ϕ0(r′)|2

+ i

2

∫ 1

0
dλ

∫ ∞

−∞

dω

2π
Tr

{
v
[
χ̃

p

λ (ω) − χ̃p
s (ω)

]}
, (23)

where χ̃
p

λ (ω) is the scaled interacting response function calcu-
lated using Eq. (22). This equation will allow us to investigate
the fractional spin error in Sec. III C and to obtain numerical
results for the fractional charge error in Sec. V.

C. Fractional spin error

The fractional spin error is defined as the energy differ-
ence of a system with N0 + 1 electrons with one electron spin
polarized (sp) on one hand, and the same system but fully spin
compensated (sc) on the other hand. Let us split the RPA in-
teraction energy into the sum of Hartree and exchange energy
(Hx) and the correlation energy. The sum of Hx energy in the
sp case reads

EHx
sp =

N0/2∑
i,j

〈ij ||ij 〉 +
N0/2∑

i

〈0i||0i〉, (24)

where we introduced the anti-symmetrized integral 〈ij ||kl〉
= ∫

drdr′ϕ∗
i (r)ϕ∗

j (r′)v(r, r′)
(
2ϕk(r)ϕl(r′) − ϕl(r)ϕk(r′)

)
.

The second term accounts for all interactions of the singly
occupied atomic orbital ϕ0. The expression for the spin
compensated case reads

EHx
sc = EHx

sp + 1

4

∫
drdr′|ϕ0(r)|2v(r, r′)|ϕ0(r′)|2. (25)
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The additional term is a non-zero self-interaction term, which
is equal to the fractional spin error of EXX. It is this term
alone that is responsible for the wrong dissociation limit of
EXX for H2. It also introduces a large additional error in the
dissociation limit of any system, on top of the error inherent
in the EXX functional when describing the fragments.

We now turn to the RPA correlation energy. The corre-
lation energy for the sc system is taken from Eq. (23) with
p = 1,

Ec
sc = −1

4

∫
drdr′|ϕ0(r)|2v(r, r′)|ϕ0(r′)|2

+ i

2

∫ 1

0
dλ

∫ ∞

−∞

dω

2π
Tr

{
v
[
χ̃1

λ (ω) − χ̃1
s (ω)

]}
. (26)

We now see that the first term exactly cancels the fractional
spin error of EXX. The second term in Eq. (23) is identi-
cal to the correlation energy obtained in the spin-polarized
case. Consequently, the RPA functional does not suffer from
fractional spin error. There will, however, still be a self-
correlation due to the second term but this is, in general, ex-
pected to be smaller. These conclusions are confirmed by the
numerical results obtained previously24–26 and here in Sec. V.

IV. COMPUTATIONAL DETAILS

Our goal is to find the local potential that minimizes the
RPA energy functional. For the three-dimensional (3D) calcu-
lations, we utilize the direct minimization scheme for the opti-
mized effective potential (OEP) proposed by Yang and Wu. 45

The potential is expanded in a basis plus a reference potential,

v(r) = v0(r) +
∑

t

btgt (r). (27)

As a reference potential we use the sum of the nuclear poten-
tial and the Fermi-Amaldi potential, vFA(r), evaluated with
the Hartree-Fock density,

vFA(r) = N − 1

N

∫
n(r ′)

|r − r ′|d r ′. (28)

For closed-shell systems, the derivative of the total energy
functional with respect to the expansion coefficients, bt, is
readily evaluated via Eq. (4). For systems with fractional
charge, we evaluated the gradient with the finite difference
method. The gradient is then fed to the Broyden-Fletcher-
Goldfarb-Shanno optimization routine to find the minimum
total energy. The calculations were considered converged
when the vector norm of the gradient was less than 10−3. The
algorithm was implemented in a local version of the PyQuante
module. 46

It is a well-known fact that the finite basis set OEP cal-
culations can become numerically unstable if a too large po-
tential basis set is used. 47–49 We carefully chose the potential
basis sets to be balanced to the respective orbital basis sets.
The proper choice is reflected in the smooth potentials that
we obtain. For our calculations, we used the standard orbital
basis cc-pVTZ from the Dunning family.

For the potential bases, we used even tempered gaussians.
Each set is characterized by three numbers: the smallest ex-
ponent, αmin, the largest exponent, αmax, and the number of

TABLE I. Energies in Hartree.

This work Benchmark

Atom IP Energy IP Energy

He −0.907 − 2.936 −0.902 − 2.945
Be −0.349 − 14.681 −0.354 − 14.754
Ne −0.773 − 128.945 −0.796 − 129.103

basis functions, N. With this set of parameters, we construct
the exponent αi as

αi = αmin

[
αmax

αmin

]( i−1
N−1 )

, (29)

where i runs from 1 to N. For the atomic calculations, we use
only s-type functions. For molecular calculations, we add a set
of p-type functions using the same exponents and omitting the
largest.

For the one-dimensional (1D) calculations, we use a ba-
sis set of cubic splines, which permits us to solve Eq. (5) by
inverting the static KS response function. The spline-basis is
described in detail in several previous works where it has been
used successfully for OEP-type of equations.37, 50, 51

V. RESULTS

As a first step, we verify our implementation. To this end,
we compare the total energy and the correlation potential with
accurate reference data for He, Be, and Ne.38 The total ener-
gies and ionization potentials (IP) are listed in Table I. The
potential basis sets are given by αmin = 0.01, αmax = 10, and
N = 5 for He, αmin = 0.01, αmax = 10, and N = 9 for Be,
and αmin = 0.001, αmax = 100, and N = 11 for Ne (compare
Eq. (29)).

The total energies of our new implementation are some-
what higher than the reference energies. The differences range
from 9 mH to 158 mH. This result is expected since the ref-
erence calculations were performed with a virtually complete
orbital basis. The differences in IP are minor (from 5 mH to
23 mH), thus indicating an accurate potential. This conclu-
sion is supported by Figs. 1–3, which show our RPA correla-
tion potentials (dashed) of He, Be, and Ne comparing to the
accurate RPA correlation potentials (dotted).38 The RPA cor-
relation potentials shown in the figures are calculated as

vRPA
c (r) = vRPA

KS [nRPA](r) − vEXX
KS [nEXX](r). (30)

In all figures, we qualitatively reproduce the reference poten-
tials. The largest deviation is found close to the nucleus (the x-
axis is on a logarithmic scale). For comparison, we also show
the exact KS correlation potential (solid)52 and we see that the
RPA correlation potential closely resembles the exact correla-
tion potential.

To analyze the RPA molecular correlation potential, we
first investigate a 1D model system with soft Coulomb in-
teractions. The nuclear potentials are −Z/

√
(x ± R/2)2 + 1,

where Z is the nuclear charge and R is the internu-
clear distance. The electron-electron interaction is set to
1/

√
(x1 − x2)2 + 1. The first system consists of two H atoms
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FIG. 1. The correlation potential of He for RPA (Ref. 38) (dotted), for RPA
in this work (dashed), and the exact correlation potential52 (solid).

(Z = 1.2). Figure 4 shows the RPA correlation potentials
along the bond axis at bond distances of 2, 4, and 6 bohrs,
with the bond midpoint at zero. We notice that the minimum
of the correlation potential is shifted away from the atom, but
that the shift decreases with increasing interatomic distance.
At the bond midpoint, a positive peak emerges with increasing
bond distance. Both features are also observed for the exact
KS correlation potential.31, 33

With our new implementation, we are able to investigate
the H2 molecule in all three dimensions and with the full
Coulomb interaction (potential basis: αmin = 0.1, αmax = 1.0,
and N = 5). In Figure 5, we show the RPA correlation po-
tential (see Eq. (30)) along the bond axis, where again the
bond midpoint is at zero. We show the potentials for equilib-
rium distance (1.4 bohrs; solid curve), 5.0 bohrs (dotted), and
10.0 bohrs (dashed). The potentials qualitatively resemble the
potentials obtained from the 1D calculations (cf. Figure 4).
Only the peak at the bond midpoint is absent for small (1.4)
and large (10.0) interatomic separations. For large separa-
tion, the absence is easily explained. The orbital and potential

FIG. 2. The correlation potential of Be for RPA (Ref. 38) (dotted), for RPA
in this work (dashed), and the exact correlation potential52 (solid).

FIG. 3. The correlation potential of Ne for RPA (Ref. 38) (dotted), for RPA
in this work (dashed), and the exact correlation potential52 (solid).

basis functions are simply not diffuse enough to extend to the
bond midpoint. This results in a vanishing correlation poten-
tial at the bond midpoint. The situation is different for a bond
distance of 1.4 bohrs. With a small atomic separation, the or-
bital and potential basis extend to the bond midpoint as is
evident from the non-vanishing correlation potential. How-
ever, the potential basis functions are not compact enough to
produce a peak. We have verified this by using more com-
pact potential basis functions. With this set of basis functions,
however, we find unphysical oscillations for larger atomic
separations. We also placed orbital and potential functions at
various points along the bond axis. We observed a peak in
the potential at each of the points, which leads us to conclude
that these peaks are artifacts of the basis rather than genuine
features of the functional.

At this point, we restrain from showing the dissociation
curve and rather point the reader to a future publication with
a detailed discussion of the dissociation curves. We would
only like to mention that the well-known “bump”24–27 is still
present, but somewhat weaker.

FIG. 4. The correlation potential along the bond axis with the bond midpoint
at zero. The system is 1D H2 with a soft Coulomb potential.
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FIG. 5. The correlation potential of H2 along the bond axis. The bond mid-
point is at zero. We show the RPA correlation potential for interatomic dis-
tance 1.4 (solid), 5.0 (dotted), and 10.0 (dashed).

We now turn to the LiH molecule. In Figure 6, we show
the RPA correlation potential (defined in Eq. (30)) of 1D
LiH (ZLi = 3.6, ZH = 1.2). The solid, dotted, and dashed
curves represent the correlation potentials for 2, 3, and 8
bohrs interatomic distances, respectively. The build up of
the peak at the bond midpoint is apparent. However, a step,
as is present in the exact KS correlation potential, is not
observed.

Figure 7 shows the correlation potential (Eq. (30)) of the
three-dimensional LiH for bond distances 3 (solid), 6 (dot-
ted), and 8 bohrs (dashed). The parameters for the potential
basis of the H atom are αmin = 0.01, αmax = 1.0, and N = 2.
For the Li atom, they read αmin = 0.001, αmax = 10, and N
= 3. The same features as in the 1D case are also found in
the results for the 3D correlation potentials. In the region of
the Li atom (−10 to 0), the potential qualitatively resembles
that of the 1D system in Figure 6. We see a well with a peak
close to the nucleus. Also in the region of the H atom (0 to 10)
Figures 6 and 7 show the same structure. A well emerges with
increasing bond distance. The difference between 1D and 3D

FIG. 6. The correlation potential along the bond with the bond midpoint at
zero. The system is 1D LiH with a soft Coulomb potential. The Li atom is
located at −1, −1.5, and −4 bohrs, respectively. The H atom is located at 1,
1.5, and 4 bohrs, respectively.

FIG. 7. The correlation potential of LiH along the bond axis. The bond mid-
point is at zero. The Li atom is located at −1.5, −2.5, and −4 bohrs, respec-
tively. The H atom is located at 1.5, 2.5, and 4 bohrs, respectively.

is found only at the bond midpoint. As in the case of H2, a
peak emerges only for the 1D system (Figure 6). In contrast,
the 3D system (Figure 7) exhibits a peak at zero only for small
and intermediate bond distances (3 and 5 bohrs). The expla-
nation for the absence of the peak at the bond midpoint for 8
bohrs is the same as in the case of H2.

We further analyze the RPA functional in the context
of fractional charge. The total energy of H and Li (potential
bases such as in LiH) is plotted (Figures 8 and 9) as a function
of the number of electrons, where we allow fractional values,
according to Eq. (23). Both atoms show a smooth behavior,
thus showing that the RPA (red) misses the kink at integer
electron numbers. Comparing to the exact curves, we see,
however, a large improvement compared to the EXX (blue)
functional regarding the total energy. The agreement is partic-
ularly well at integer number of electrons. This explains the
good dissociation energies for homoatomic systems found in
the RPA. We can also combine these two figures to analyze
the RPA energy of LiH in the dissociation limit. In order to
do this, we add the energies for the H atom to the energies
of the Li atom so that the total number of electrons sums up

FIG. 8. The total energy of H as a function of number of electrons for EXX
(blue), RPA (red), and exact (black).
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FIG. 9. The total energy of Li as a function of number of electrons for EXX
(blue), RPA (red), and exact (black).

to four. Figure 10 shows the total energy as a function of the
number of electrons at the H atom. The number of electrons
at the Li atom will then be four minus the x value. The exact
functional (black) has a minimum at 1.0 because it dissociates
LiH into a neutral H atom and a neutral Li atom. In Figure
10, we see that EXX (blue) and RPA (red) do not dissoci-
ate LiH into the neutral atoms. In both cases, there is a sur-
plus of electronic charge at the H atom. However, in the case
of RPA the surplus (0.16 electrons) is much smaller than in
the case of EXX (0.4 electrons). The large improvement may
be related to the peak that is present in the RPA correlation
potential. Finally, in Table II we collect the total energies
in the dissociation limit of H2, Li2, and LiH for the exact
functional, EXX, and RPA. Please note that the LiH ener-
gies of EXX and RPA are taken as the minimum of the re-
spective curves in Figure 10 and not the values at 1.0. This
is to account for the fractional charge error present in both
functionals.

FIG. 10. The total energy of dissociated LiH as a function of number of
electrons at the H atom for EXX (blue), RPA (red), and exact (black).

TABLE II. Total energies in Hartree in the dissociation limit.

Exact EXX RPA

H2 − 1.000 − 0.713 − 1.035
Li2 − 14.948 − 14.749 − 14.961
LiH − 7.974 − 7.759 − 8.007

VI. CONCLUSIONS

We have obtained the self-consistent RPA correlation po-
tentials for diatomic molecules and studied their behavior as a
function of interatomic distances. At large distances, the RPA
potential correctly exhibits a peak at the bond midpoint but
misses the step feature.

We have also analyzed the RPA functional for frac-
tional charges by evaluating the ensemble-averaged KS Green
function using spin-compensated ensembles with non-integer
number of particles. This procedure can be carried over to
other functionals constructed from the KS Green function.

The numerical results show that the kink at integer num-
ber of electrons is missed in the RPA. As a consequence, we
find spurious fractional charges on the dissociated fragments.
The charges are, however, much smaller compared to other
functionals. On the other hand, the RPA will most likely not
be able to describe the so-called field counteracting effect in
the correlation potential of hydrogen chains which has been
discussed to have its origin in the derivative discontinuity.53

In summary, we have found that the RPA accomplishes
the following:

� The dissociation limit of closed-shell molecules is well
reproduced in the RPA due to the explicit elimina-
tion of the self-interaction term present in the EXX
functional.

� RPA separates the charges in bond dissociation by
virtue of a peak at the bond midpoint, an exact feature
of the true correlation potential.

� RPA exhibits only a small fractional charge error in the
cases of closed-shell covalently bonded molecules.

These findings consolidate the high expectations on the RPA
that are currently prevalent. There is, however, still room for
improvement as the discontinuity at odd integer particle num-
ber is missing. We believe that improvements on the RPA
within the ACFD framework will help to overcome this short-
coming.

APPENDIX: DERIVATIVE OF THE RPA ENERGY

In this Appendix, we return to Eq. (5) and evaluate nc(r)
in terms of KS orbitals, ϕk, and KS eigenvalues, εk. The self-
energy (Eq. (6)) involves an integration over the frequency of
the following form:

�c(ω) = i

∫
dω′

2π
Gs(ω

′ + ω)vχRPA(ω′)v, (A1)

where we have suppressed the space-coordinates. To per-
form the integration, we write the KS Green function in its

Downloaded 23 Jan 2012 to 192.108.69.177. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



034106-8 Hellgren, Rohr, and Gross J. Chem. Phys. 136, 034106 (2012)

Lehmann representation,

Gs(r, r′, ω) =
∑

k

ϕk(r)ϕk(r′)

×
[

nk

ω − εk − iη
+ 1 − nk

ω − εk + iη

]
, (A2)

where nk is the occupation number. The response function
in the RPA is given by Eq. (7). This equation can easily be
rewritten as an eigenvalue problem in terms of the matrix

Vqq ′ = ω2
qδqq ′ + 〈

f̃q |v|f̃q ′
〉
, (A3)

where f̃q(r) = 2
√

ωqfq(r), with fq(r) being a KS excitation
function and ωq the KS excitation energy. The square root of
the eigenvalues corresponds to the true excitation energies Zq,
and the excitation functions are transformed according to

Fq(r) =
∑
q ′

fq ′ (r)Uq ′q, (A4)

where U is the matrix diagonalizing V. The interacting time-
ordered response function in the RPA can then be written as

χRPA(r, r′, ω) =
∑

q

1

2Zq

Fq(r)Fq(r′)

×
[

1

ω − Zq + iη
− 1

ω + Zq − iη

]
,

(A5)

and the integral in Eq. (A1) becomes

�c(r, r′, ω) =
∑
kq

ϕk(r)
∫

dr1v(r, r1)Fq(r1)

×ϕk(r′)
∫

dr1v(r′, r1)Fq(r1)

× 1

2Zq

[
1−nk

ω − εk − Zq+iη
+ nk

ω−εk+Zq−iη

]
.

(A6)

Next, we evaluate

nc = −i

∫
dω

2π
�c(ω)Gs(ω)Gs(ω). (A7)

After performing standard contour integrations, we get in to-
tal six terms, which after symmetry considerations can be re-
duced to four. In summary, we find

nc(r) =
∑
ksp

∑
q

1

Zq

(. . .) ϕ∗
s (r)ϕp(r)

×
∫

dr1dr2Fq(r1)v(r1, r2)ϕk(r2)ϕ∗
p(r2)

×
∫

dr1dr2ϕs(r1)ϕ∗
k (r1)v(r1, r2)F ∗

q (r2), (A8)

where the dots signify the insertion of the following four
terms:

− (1 − nk)npns

(εk + Zq − εp)(εk + Zq − εs)
, (A9)

+ 2(1 − nk)np(1 − ns)

(εp − Zq − εk)(εp − εs)
, (A10)

+ 2nknp(1 − ns)

(εs + Zq − εk)(εp − εs)
, (A11)

+ nk(1 − ns)(1 − np)

(εs + Zq − εk)(εp + Zq − εk)
. (A12)

The expression in Eq. (A8) has, in this work, been imple-
mented both in the 3D and in the 1D cases.
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