
Morphological instability of misfit-strained core-shell nanowires

V. Schmidt,1,2,* P. C. McIntyre,1 and U. Gösele2

1Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
2Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

�Received 7 February 2008; published 3 June 2008�

We investigate the morphological instability of a misfit-strained cylindrical core-shell nanowire by perform-
ing a linear stability analysis. For this aim, the stress and strain distributions of a core-shell nanowire with a
sinusoidally perturbed surface are calculated to first order, properly accounting for the core-shell interface. In
addition, the effect of surface stress on the stress and/or strain distributions is considered. Due to the large
surface-to-volume ratio of nanosized objects, this is indispensable. The outcome of the stability analysis is
threefold: First, our calculation shows that surface stress strongly influences the nature of the fastest growing
mode of perturbation. It turns out that the axially symmetric mode does not necessarily grow fastest. Second,
we find that the system is most unstable in the initial phase of shell growth, i.e., for thin shell thicknesses.
Interestingly, considering thin shells and large misfits ��3%�, we find that there exists a core radius for which
stability becomes maximal. Under the conditions considered this radius is in the range of about 5–10 nm.
Third, there exists a parameter range for which the experimental observation that Ge-rich islands grown on
thick silicon nanowires tend to be aligned in two rows on the opposite sides of the nanowire agrees with the
outcome of our calculation.
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I. INTRODUCTION

Synthesizing epitaxial and dislocation free core-shell
nanowires in which the shell material has a large lattice mis-
fit with respect to the core is an experimentally challenging
but scientifically rewarding task. Rewarding because one can
in principle achieve very high stresses and strains in the
nanowire core, which, considering Si-Ge-core-shell nano-
wires, for example, would cause strong changes in the band
structure. From an electronic device point of view this is
appealing because by straining the material one can increase
the charge carrier mobility.1 In case of a core-shell structure,
this mobility increase could be further enhanced by a care-
fully chosen core-shell band alignment and doping profile.2

Together with the possibility of realizing a surround-gate
architecture,3 this could be an interesting approach to high
performance devices.

Yet, experimentally realizing a strongly strained core-
shell structure is not trivial. This is because the system tends
to relax the misfit strain by either developing a modulation of
the surface, potentially leading to the creation of islands or
notches on the surface, or by forming misfit dislocations.
Tersoff and LeGoues4 showed that the competition of these
two relaxation mechanisms is such that for small lattice mis-
fits the introduction of dislocations is favored, whereas large
misfits promote the creation of islands or notches on the
surface. The creation of islands or notches is usually related
to the so-called Asaro–Tiller–Grinfel’d instability,5,6 a strain
induced morphological instability of the surface. Roughly
speaking, one could describe the underlying mechanism by
stating that for certain surface modulations, the energetic
costs of increasing the surface area are smaller than the gain
of reducing the elastic energy. Considering the growth of
misfit-strained films on planar substrates, this instability has
been the subject of extensive investigations.7–10 However,
these results may not be directly applicable to misfit-strained

core-shell nanowires. Besides the pure geometrical differ-
ences, this is mainly caused by the fact that a bulk substrate
is much less susceptible to the deformation by a strained
layer than a nanowire. In case of a misfit-strained core-shell
nanowire, one expects that a considerable part of the elastic
energy is stored in the core, whereas in case of a bulk sub-
strate the strained film basically contains the whole elastic
energy. Another important difference between planar sub-
strates and nanowires is that, due to their large surface-to-
volume ratio, the morphological instability of core-shell
nanowires critically depends on the surface stress.

In this work, we investigate the misfit driven morphologi-
cal instability related to the creation of islands on the surface
of core-shell nanowires by performing a linear stability
analysis. We will use boundary conditions that are as realistic
as possible, which means that we will properly account for
the misfit at the interface, instead of just assuming a unidi-
rectional stress along the centerline of the wire.11,12 Further-
more, we will not limit ourselves to axially symmetric modu-
lations of the surface.12,13 Since the presence of islands
usually breaks axial symmetry,14 one has to take nonaxially
symmetric modulations into account. Last, the effect of sur-
face stress is properly accounted for.

II. THEORY

The system under consideration is a cylindrical core-shell
nanowire with the shell grown epitaxially and dislocation
free onto the core material. The shell material is assumed to
possess a certain lattice misfit m with respect the core, so that
both core and shell become elastically strained. For simplic-
ity the mechanical constants, i.e., the shear modulus G, the
Poisson ratio �, the surface stress �, and the surface free
energy �, are taken to be isotropic. Tensors and vectors are
either indicated by Roman summation indices �adopting Ein-
stein’s summation convention� or by bold font symbols.
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The scheme of the linear stability analysis, following the
works of Mullins15 and Spencer et al.,10 is simple. Core-shell
nanowires are in reality not perfectly cylindrical. Instead,
they show local deviations of cylindrical geometry. Thinking
in Fourier space, these local deviations correspond to a broad
distribution of sinusoidal surface modulations, which can be
characterized by their wave number q in axial direction �the
ẑ direction� and the mode number n in circumferential direc-
tion. Thus, if the outer radius of the unperturbed core-shell
nanowire is R2, and � is the amplitude of the perturbation,
then the actual surface radius Rs can be expressed as

Rs = R2 + � cos�qz�cos�n�� . �1�

This is schematically depicted in Fig. 1 for a perturbation
with n=4 and q�2� /R2. Of course, such modulations of the
shell thickness also affect the stress and strain distributions
within the nanowire and cause variations of the elastic en-
ergy. These variations can drive surface diffusion, and the
question to be answered is whether surface diffusion ulti-
mately leads to an increase or a decrease in the initial ampli-
tude of modulation.

To answer this question the stress and strain distributions
are calculated in a perturbative fashion. After some defini-
tions, the zeroth order contributions, i.e., the stress and strain
distribution of a cylindrical misfit-strained core-shell nano-
wire, are given in Sec. II A. All resulting zeroth order quan-
tities such as the displacement ūi, the strain ūij, the elastic
strain 	̄ij, or the stress 
̄ij will be marked by an overbar. In
Sec. II B we will then compute the changes to the stress and
strain distribution to first order in �, where all first order
quantities will be marked by a tilde, symbolizing the wavi-
ness of the surface. Thus, we can write

ui
� = ūi

� + ũi
� + O��2� , �2�

uij
� = ūij

� + ũij
� + O��2� , �3�

	ij
� = 	̄ij

� + 	̃ij
� + O��2� , �4�


ij
� = 
̄ij

� + 
̃ij
� + O��2� . �5�

The index � takes the values 1 or 2, where 1 stands for the
nanowire core and 2 for the shell. Terms that are of second or
higher order in � will be neglected. To determine the zeroth
and first order stress and strain distributions, we assume that
the system is in equilibrium, so that in the absence of exter-

nal body forces the displacement vector u has to fulfill the
equations of equilibrium,16

�1 − 2���u + ��� · u� = 0. �6�

Considering the symmetry of the problem one can solve the
above equations. By additionally imposing proper boundary
conditions one can then obtain explicit solutions for the dis-
placement vector u. Using cylindrical coordinates, i.e., u
=urr̂+u��̂+uzẑ, the components of the strain tensor uij are
defined as16

urr = �rur, �7�

uzz = �zuz, �8�

u�� = r−1��u� + r−1ur, �9�

urz = ��zur + �ruz�/2, �10�

u�z = �r−1��uz + �zu��/2, �11�

ur� = ��ru� − r−1u� + r−1��ur�/2. �12�

Completely analogous equations are valid for ūij and ũij. So
we will use Eqs. �7�–�12� also for ūij and ũij by imagining a
bar or tilde set over each displacement or strain component.
In Eq. �4� we introduced the elastic strain tensor 	ij. This
differentiation between uij and 	ij is necessary to account for
the lattice misfit at the core-shell interface. If the misfit pa-
rameter m is defined as

m =
l2 − l1

l1
, �13�

with l1 and l2 being the lattice constants of the core and the
shell, respectively, one can implement the misfit strain by
introducing the following relation between the strain tensor
uij and the elastic strain tensor:

	ij
� = uij

� − m�ij��2. �14�

Here both �ij and ��2 denote a Kronecker delta. One can see
that the elastic strain of the nanowire shell is “corrected” by
the misfit strain. Moreover, the above definitions ensure that
compressive stresses and/or strains are negative and tensile
stresses and/or strains are positive. The stress tensor16 is de-
fined as


ij
� =

2G�

1 − 2��

��1 − 2���	ij
� + ��	ll

��ij� , �15�

with G� and �� being the shear modulus and the Poisson
ratio of the core or shell, respectively �� is not to be summed
over�. Together with Eq. �14� this leads to the following re-
lation between 
ij and uij:


ij
� =

2G�

1 − 2��

��1 − 2���uij
� + ��ull

��ij − �1 + ���m�ij��2� .

�16�

These results can now be applied to the zeroth order quanti-
ties,

FIG. 1. Schematic of core-shell nanowire with a sinusoidal per-
turbation �n=4,q�2� /R2� of the surface; R1 and R2 are the initial
core and shell radii, respectively and Rs is the surface radius. �a�
Side view and �b� cross-sectional view.
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	̄ij
� = ūij

� − m�ij��2, �17�


̄ij
� =

2G�

1 − 2��

��1 − 2���ūij
� + ��ūll

��ij − �1 + ���m�ij��2� ,

�18�

and to the first order contributions,

	̃ij
� = ũij

� , �19�


̃ij
� =

2G�

1 − 2��

��1 − 2���ũij
� + ��ũll

��ij� , �20�

in accordance with Eqs. �3�–�5�.

A. Zeroth order stress and strain

The first task is to find the stress and strain distributions
of a cylindrical misfit-strained core-shell nanowire. The ra-
dial symmetry of the problem causes both the displacement
ū� as well as the derivatives with respect to � to be zero.
Since the problem is taken to be translationally invariant
with respect to translations in the ẑ direction and the end
faces of the nanowire are assumed to be flat, �zūr=�rūz=0.
Under these conditions, the equations of equilibrium �6� can
be reduced to the following two decoupled equations:

�r
2ūr

� +
1

r
�rūr

� −
1

r2 ūr
� = 0, �21�

�z
2ūz

� = 0, �22�

having the solutions

ūr
� = a�r + b�

1

r
, �23�

ūz
� = c�z , �24�

with a�, b�, and c� being six undetermined constants. One
constant can directly be eliminated as ūr has to be finite at
r=0, wherefore b1=0. Thus, the problem is reduced to de-
termining the five unknowns, a1, a2, b2, c1, and c2, by im-
posing proper boundary conditions.

Before coming to the determination of these five un-
knowns, we would like to add some general remarks here on
the role of the nanowire surface. As first recognized by
Gibbs17 and much later pointed out by Shuttleworth,18 the
surface free energy � of a solid does not necessarily equal
the surface stress �. The surface free energy � is related to
the work of creating new area, e.g., by splitting, whereas the
surface stress � is related to the work of increasing the sur-
face area by elastic deformation.19 In principle, this work has
to be characterized by introducing a second rank tensor �ij,
the surface stress tensor. However, for isotropic surfaces this
tensor �ij =��ij reduces to a scalar, the surface stress �. This
distinction between the surface free energy � on the one
hand and the surface stress � on the other is important for
this calculation, as we need � to describe surface diffusion
and � for the boundary conditions of the strain problem.

In equilibrium the position of the boundary surface has to
be stable, which is equivalent to stating that any net force in
normal direction has to vanish. In case of a macroscopic
solid-fluid interface this leads to


ijnj + Pfni = 0,

with nj being the outward surface normal and Pf being the
pressure in the surrounding fluid. Thus, a positive pressure
Pf causes the normal component of the stress to be negative,
i.e., compressive.

However, one has to be careful, as this condition, though
customarily used in standard textbooks, implicitly neglects
the surface stress contribution. Though being a reasonable
approximation for macroscopic or even microscopic prob-
lems, this is not valid for nanoscopic problems with large
surface-to-volume ratio. Considering nanoscopic problems
with length scales on the order of � /G, surface stress cannot
be neglected, and one has to account for that in the boundary
conditions.

Imagine a curved square-shaped surface element with the
sides being parallel aligned with respect to the principle di-
rections of curvature. Then a positive surface stress means
that in-plane forces are pulling at the sides of the surface
element. One can easily show using elementary geometry
that this corresponds to a force equal to −�
ni, with 
 being
the sum of the principle curvatures and ni being the outward
surface normal. So the boundary conditions to be used at
solid-fluid interfaces are


ijnj + Pfni + �
ni = 0. �25�

A more rigorous derivation of the above equation is given in
Eq. �B2�.

In our case, we can neglect the pressure Pf. Under typical
experimental conditions Pf is orders of magnitude smaller
than the values of the bulk stress. Furthermore, we assume
that, due to the epitaxial nature of the core-shell interface, the
interface stress is small enough to be neglected. Thus, the
conditions to be imposed are as follows.

�i� Equality of displacements at the core-shell interface.
This ensures the epitaxial nature of the core-shell interface
and leads to Eqs. �26� and �27�.

�ii� Zero net normal force at the core-shell interface. Ne-
glecting interface stress and using the outward normal n̄i

�1� of
the core-shell interface, this gives

�
̄ij
�1�n̄j

�1��r=R1
= �
̄ij

�2�n̄j
�1��r=R1

.

Using n̄j
�1�= r̂ leads to Eq. �28�.

�iii� Zero net force in the ẑ direction. Considering that
surface stress also creates a force in the ẑ direction leads to

�
0

R1


̄zz
�1�2�rdr + �

R1

R2


̄zz
�2�2�rdr + �2�R2 = 0.

Since 
zz
� has no r dependence, the integrals are trivial �see

Eq. �29��.
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�iv� Zero net normal force at the surface. As discussed,

�
̄ij
�2�n̄j

�2��r=R2
+ �

1

R2
n̄i

�2� = 0.

Together with n̄j
�2�= r̂, this gives Eq. �30�.

So we end up with the following set of boundary condi-
tions:

�ūr
�1��R1

= �ūr
�2��R1

, �26�

�ūz
�1��R1

= �ūz
�2��R1

, �27�

�
̄rr
�1��R1

= �
̄rr
�2��R1

, �28�

R1
2
̄zz

�1� + �R2
2 − R1

2�
̄zz
�2� = − 2�R2, �29�

�
̄rr
�2��R2

= −
�

R2
. �30�

For simplicity we will from now on take G1=G2=G and
�1=�2=�. That is, we use the same material parameters for
both core and shell, which is a reasonable approximation for
many prominent material combinations such as Si-Ge,
GaAs-AlAs, GaN-AlN, and others. Extending the model to
nonidentical material constants is straightforward. Solving
the boundary conditions �Eqs. �26�–�30�� for the five un-
knowns gives

a1 =
m�1 − 3���R2

2 − R1
2�

2�1 − ��R2
2 −

��1 − 3��
2G�1 + ��R2

, �31�

a2 =
m�2R2

2�1 − �� − R1
2�1 − 3���

2�1 − ��R2
2 −

��1 − 3��
2G�1 + ��R2

, �32�

b1 = 0, �33�

b2 =
− m�1 + ��R1

2

2�1 − ��
, �34�

c1 =
m�R2

2 − R1
2�

R2
2 −

��1 − ��
G�1 + ��R2

, �35�

c2 = c1, �36�

with these expressions used in Eqs. �23� and �24� one obtains
the displacements ūr and ūz, from which one can derive the
strain tensor ūij �using Eqs. �7�–�12��, the elastic strain tensor
	̄ij �using Eq. �17��, and the stress tensor 
̄ij �using Eq. �18��.

Before we proceed with the calculation, we will examine
the effect of surface stress � on the elastic strain component,

	̄zz =
m���1 − R1

2�
R2

2 −
��1 − ��

2GR2�1 + v�
. �37�

One can see that taking into account a positive surface stress
�in contrast to the surface free energy �, the surface stress of
a solid can also be negative�, the resulting 	̄zz is shifted by a

negative term proportional to �R2
−1, corresponding to an ad-

ditional compressive force.
Consider, for example, a 7 nm diameter Si0.8Ge0.2 nano-

wire covered by a 3 nm Si shell, which corresponds to a
misfit of m=−0.0089. To compute the elastic strain using Eq.
�37� we need a reasonable estimate for the magnitude of �,
which turns out to be elusive, as the surface stress values of
Si and Ge exhibit a pronounced anisotropy,20–22 depend on
the type of surface reconstruction,23–26 and are additionally
altered by the presence of adatoms.27,28 For example, the
surface stress values calculated by Meade and Vanderbilt27

for a Si �111� surface range from −0.7 to 2.4 N/m depending
on the specific surface configuration. In view of these ambi-
guities we will simply use a surface stress value of �
=1 N /m, which we think is a fair estimate considering the
values given in Refs. 23–28.

Using G=46 GPa and �=0.26,29 the strain 	zz computes
to −0.83% �−0.63%� in the nanowire core and 0.06%
�+0.26%� in the shell, respectively. The numbers in paren-
theses give the corresponding values for �=0. Thus, for this
example, surface stress shifts the strain by −0.20%, leading
to an increased strain in the core and an almost vanishing
strain in the shell. This is really remarkable, as it means that
one can in principle grow stress free shells on strained cores
just by going to small enough radii. Furthermore, note that a
nonzero surface stress necessarily breaks the antisymmetry
of stress and strain with respect to sign changes in m. With
surface stress considered, stress and strain are antisymmetric
with respect to a simultaneous sign changes in both m and �.

B. First order contribution to stress and strain

Next, we examine how adding a sinusoidal perturbation
changes the stress and/or strain distribution. To arrive at ex-
pressions for the first order contributions, 	̃ij or 
̃ij is in prin-
ciple as straightforward as we have seen in Sec. II. However,
instead of solving the equations of equilibrium �6� for the
displacements, we will search for a solution in terms of the
so-called Papkovich–Neuber potentials30,31 � and �, with
�=�rr̂+���̂+�zẑ being a vector and � being a scalar po-
tential. From these, the displacements can then be derived by
using the following relation:32

u = 4�1 − ��� − ��R · � + �� , �38�

with R=rr̂+zẑ. The main advantage of the Papkovic–Neuber
potentials is that they simplify solving the equations of equi-
librium �6�, as these are fulfilled if both potentials separately
satisfy Laplace’s equation

� · � = 0, �39�

�� = 0. �40�

For a radially symmetric problem the solutions are

�� = �d�In�qr� + e�Kn�qr��cos�qz�cos�n�� , �41�

�r
� = �f�In+1�qr� + g�In−1�qr� + h�Kn+1�qr�

+ i�Kn−1�qr��cos�qz�cos�n�� , �42�
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��
� = �f�In+1�qr� − g�In−1�qr� + h�Kn+1�qr�

− i�Kn−1�qr�cos�qz�sin�n��� , �43�

�z
� = �j�In�qr� + k�Kn�qr��cos�qz�cos�n�� , �44�

where In�qr� and Kn�qr� denote the modified Bessel func-
tions of order n. Again, the task is to determine the values of
the constants d�, e�, f�, g�, h�, i�, j�, and k�. Fortunately,
one can greatly reduce the number of unknowns by taking
both the symmetry and the finiteness of the solution into
account.

Consider the diagonal strain component in the ẑ direction,
which according to Eqs. �38� and �8� is given by

uzz = �3 − 4���z�z − r�z
2�r − �z

2� − �z�z − z�z
2�z. �45�

This strain component must exhibit the same periodicity as
the perturbation. However, due to the last term in Eq. �45�,
this is only possible if �z=0 or equivalently if j�=k�=0. So
Eq. �38� simplifies to

ũr = 4�1 − ���r − �r�r�r
� + ��� , �46�

ũz = − �z�r�r
� + ��� , �47�

ũ� = 4�1 − ���� − r−1���r�r
� + ��� . �48�

One is tempted now to directly use Eqs. �41�–�44� and �46�–
�48� in Eqs. �7�–�12� to derive expressions for the strains to
be used in the boundary conditions. Yet, one has to be careful
here, as this is only correct for modes with n�1.

The problem with the n=1 mode arises when one tries to
directly derive the strain using Eqs. �7�–�12�. Due to the r−1

terms in Eqs. �9�, �11�, and �12�, these expressions would
give infinite strains unless the displacements ũr and ũ� �see
Eqs. �49� and �50�� are zero to at r=0.

�ũr�r=0 = ��3 − 4��g1 −
q

2
d1	�n1 cos�qz�cos�n�� , �49�

�ũ��r−0 = ��3 − 4��g1 −
q

2
d1	�n1 cos�qz�sin�n�� . �50�

Note that due to �n1 in Eqs. �49� and �50�, the displace-
ments ũr and ũ� at r=0 are nonzero only in case of the n
=1 mode. In order to eliminate this potential divergence of
the strain, we have to subtract expressions �49�, Eq. �49�
from Eq. �46�, and Eq. �48� before applying Eqs. �7�–�12�.

Why we only obtain nonzero displacements at r=0 in
case of the n=1 mode can be seen in Fig. 2, which shows a
schematic of the first three modes, n=0, n=1, and n=2. Due
to symmetry reason, the radially symmetric n=0 pertubation
cannot effect any nonzero displacements ũr and ũ� at r=0,
i.e., at the center of symmetry center. Also in case of the n
=2 mode, which shows a twofold symmetry, the effects of
the perturbation will cancel out at r=0. Only in case of the
n=1 mode, where you have one bump on one side and a
recess on the opposite side of the wire ũr and ũ� can become

nonzero at r=0. One can interpret this nonzero displacement
as a bending of the wire as a whole, resulting in case of the
n=1 mode in a slight S shape.

Let us come back now to determining the unknowns in
general solutions �41�–�44�. We can eliminate three constants
by demanding that the solution has to be finite at r=0,
wherefore e1, h1, and i1 are bound to be zero. The remaining
nine constants we have to determine with the help of an
equal number of boundary conditions. For this aim it is use-
ful to introduce the normal vectors ñi

�1� and ñi
�2� of the core-

shell interface and of the surface, respectively. Since the core
is assumed to be cylindrical, ñ�1�= r̂. Neglecting the second
order terms, the surface normal ñ�2�= r̂+���̂+�zẑ with

�� = �
n

R2
cos�qz�sin�n�� , �51�

�z = �q sin�qz�cos�n�� , �52�

and the curvature 
 of the nanowire surface �see Eq. �A10��
is given by


 =
1

R2
+ ��n2 − 1

R2
2 + q2	cos�qz�cos�n�� . �53�

The boundary conditions are as follows.
�i� Equality of displacements at the core-shell interface,

leading to Eqs. �54�–�56�.
�ii� Zero net normal force at the core-shell interface,

�
ij
�1�ñj

�1��r=R1
= �
ij

�2�ñj
�1��r=R1

,

which by using 
ij = 
̄ij + 
̃ij together with Eq. �28� and the
fact that the interface normal ñ j

�1�= r̂ gives

�
̃ir
�1��r=R1

= �
̃ir
�2��r=R1

.

Since the shear components 
̃�r and 
̃zr are nonzero, this
gives three conditions �see Eqs. �57�–�59��.

FIG. 2. Schematic cross section and 3D view of the three first
modes n=0, n=1, and n=2; the amplitude of the perturbation was
chosen to be R2 /4. Only in case of the n=1 mode the center of the
cross section shifts with z.
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�iii� Zero net normal force at the surface,

�
ij
�2�ñj

�2��r=R2
= − ñi

�2��
 .

Using Eq. �5� together with Eq. �28� gives

�
̃rr
�2��r=R2

− �
1

R2
= − �
 ,

�
̃�r
�2��r=R2

+ ���
̄��
�2� �r=R2

= − ���
 ,

�
̃zr
�2��r=R2

+ ��z
̄zz
�2��r=R2

= − �z�
 .

Inserting Eqs. �51�–�53� and eliminating second order terms
then result in Eqs. �60�–�62�. So finally we end up with the
following boundary conditions:

�ũr
�1��R1

= �ũr
�2��R1

, �54�

�ũz
�1��R1

= �ũz
�2��R1

, �55�

�ũ�
�1��R1

= �ũ�
�2��R1

, �56�

�
̃rr
�1��R1

= �
̃rr
�2��R1

, �57�

�
̃r�
�1��R1

= �
̃r�
�2��R1

, �58�

�
̃rz
�1��R1

= �
̃rz
�2��R1

, �59�

�
̃rr
�2��R2

= − ���q2 +
n2 − 1

R2
	cos�qz�cos�n�� , �60�

�
̃r�
�2��R2

= − �
n

R2
��
̄��

�2� �R2
+

�

R2
	cos�qz�sin�n�� , �61�

�
̃zr
�2��R2

= − �q��
̄zz
�2��R2

+
�

R2
	sin�qz�cos�n�� . �62�

This set of equations has now to be solved for the nine un-
known constants. However, one can show that for G1=G2
=G and v1=v2=G, Eqs. �54�–�59� are fulfilled if e2=h2= i2
=0, d1=d2, f1= f2, and g1=g2. Thus, it boils down to deter-
mining the values of d2, g2, and h2 by solving Eqs. �60�–�62�.
Unfortunately, the solutions are still too long to be displayed.
Instead the explicit forms of Eqs. �60�–�62� are given in Eqs.
�B3�–�B5�. With the expressions for d2, g2, and h2 at hand,
one can derive the displacements �using Eqs. �46�–�50��, the
strain �using Eqs. �7�–�12��, the elastic strain �using Eq.
�19��, and the stress �using Eq. �20��. These results can then
be combined with the corresponding zeroth order results to
obtain the full stress and strain distributions to first order in
�.

One example of such a first order result is displayed in
Fig. 3�b�, which shows the elastic strain component 	zz= 	̄zz
+ 	̃zz as a function of r and z for a Ge-core �diameter of 15
nm� Si-shell �thickness of 5 nm� nanowire with an cosinu-
soidal perturbation �n=0,q=2� /25 nm−1�. The other pa-
rameters used are given in Fig. 3.

One can see in Fig. 3�b� that the core is compressively
strained, whereas the shell is under tensile strain, as expected
for a Ge-core-Si-shell structure. At the surface of the nano-
wire, the strain is reduced in the region where the shell is
relatively thick �around z=0 and z=�=25 nm�. In the region
around z=� /2, where the shell thickness becomes minimal,
the strain is considerably increased. This behavior can be
intuitively understood by taking into account the schematic
drawing shown in Fig. 3�a�. In the regions where the shell is
thicker than average, the strain is partly reduced by an elastic
contraction of the shell. The contrary occurs in the regions
where the shell is thinner than average. Here one would ex-
pect an increase in the tensile strain.

C. Linear stability analysis

According to Spencer et al.9 the diffusion induced surface
flux Js can be expressed as33–35

Js =
− Ds�

kT
�sMv, �63�

with Ds, �, and �s being the surface diffusion constant, the
area density of lattice sites, and the surface gradient, respec-
tively; kT has its usual meaning. Mv denotes the diffusion
potential9

Mv = ����
� +
1

2

ij	ij	

r=Rs

, �64�

with �� and 
� being the surface energy density and the
curvature of the �unstrained� reference state and � being the
volume per atom. The diffusion potential has to be evaluated
at the surface of the nanowire. Following the suggestion by
Spencer et al.9 we will neglect the difference between the
actual state and the reference state and take the correspond-
ing quantities � and 
 of the strained state instead. The 1/2

FIG. 3. �a� Schematic of a perturbed layer under tensile strain.
�b� 	zz as a function of r and z. Rs=R2+� cos�qz�, with R2

=12.5 nm and q=� /R2. R1=7.5 nm, �=2, G=46 GPa, �=0.26,
n=0, m=−0.043, and �=1.5 N m−1.
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ij	ij term is the energy density of the stress and/or strain
field.

In addition to surface diffusion, we also consider the
deposition of atoms onto the nanowire surface, going on at a
rate Q, defined as the numbers of atoms per unit area and
unit time. By employing the continuity equation, one can
show that a radial vector Rs to a position on the surface will
change with time as

Ṙs = �Qñ�2� − ���sJs�ñ�2�, �65�

with the surface normal ñ�2� defined in Eq. �A5�. Inserting
Eq. �63�, the radial component of this vector equation be-
comes, to first order in �, equal to

Ṙs = �Q +
Ds��2

kT
�s��
 +

1

2

ij	ij	

r=Rs

, �66�

with �s being the surface Laplace operator, whose first order
expression is given in Eq. �A8�. Using 
ij = 
̄ij + 
̃ij and 	ij
= 	̄ij + 	̃ij in the above equation and expanding the product
would give four terms. Yet, the 
̄ij	̄ij term is independent of
z and � and can therefore be omitted. Also the 
̃ij	̃ij can be
neglected, since it is of second order in �, and the other two
terms can be combined by using 
̃ij	̄ij = 
̄ij	̃ij. That this
equality holds can be shown in a straightforward calculation
by inserting Eqs. �17�–�20� and simplifying the expressions.
Since all terms in parentheses in Eq. �66� are at least of order
�, it is sufficient to use the zeroth order approximation for
the Laplacian �s �see Eq. �A8��,

�s
0 =

1

R2
2��

2 + �z
2. �67�

Since we are only interested in first order contributions, we
can evaluate the expression in parentheses at R2 instead of
Rs,

Ṙs = �Q +
Ds��2

kT
�s

0��
 + 
̄ij	̃ij�r=R2
. �68�

Due to the linear approximation, 	̃ij must be proportional to
�. In addition, one can show using Eqs. �46�–�48� and �14�
that 	̃ij is proportional to cos�qz�cos�n��, so that we can
define a quantity �̃ij that is independent of z and � as

	̃ij = �̃ij� cos�qz�cos�n�� . �69�

We can now insert the explicit forms of Rs and 
 and per-
form �s

0,

Ṙ2 + �̇ cos�qz�cos�n�� = �Q +
Ds��2�

kT
� n2

R2
2 + q2	�n2 − 1

R2
2

+ q2 +

̄ij�̃ij

�
	� cos�qz�cos�n�� .

�70�

Separating the terms that are proportional to the cosines from
those that are not then gives

Ṙ2 = �Q , �71�

�̇ =
Ds��2�

kT
S� , �72�

with the stability parameter

S = � n2

R2
2 + q2	�1 − n2

R2
2 − q2 −


̄ij�̃ij

�
	 . �73�

One can see that a uniform deposition on the surface, char-
acterized by the parameter Q, causes an increase in the outer
radius R2. This change in R2 would in principle also affect
the magnitude of stability parameter S. However, if you as-
sume that the radius change caused by the deposition hap-
pens on a much longer time scale, i.e., considering low depo-
sition rates, you can decouple Eqs. �71� and �72� and
consider the growth of the instability separately. In this case,
the solution becomes

��t� = �0 exp�Ds��2�

kT
St	 , �74�

with �0 being the amplitude of the perturbation at t=0. This
simple exponential time dependence corresponds to an in-
crease in � if S�0. That is the surface is unstable with re-
spect to this particular perturbation. For S�0 the initial am-
plitude of perturbation decays exponentially with time, i.e.,
the cylindrical surface is stable with respect to this particular
perturbation.

III. RESULTS AND DISCUSSION

We have seen that the time development of � critically
depends on the sign of the stability parameter S. Considering
Eq. �73� it becomes clear that, were it is not for the 
̄ij�̃ij
term, larger values of q and n would lead to a smaller posi-
tive or larger negative value of S; that is, the shorter the
wavelength of the perturbation, the more stable the surface.
To give an impression of how the q dependence typically
behaves, Fig. 4 shows S as a function of q for the first three
modes for a 7 nm radius Ge nanowire covered by a 3 nm

FIG. 4. Stability parameter S as a function of the wave number
q for R1=7 nm, R2=10 nm, G=46 GPa, �=0.26, m=−0.043, �
=1.0 N m−1, and �=1.5 J m−2.
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thick Si shell. The surface free energy is taken to be �
=1.5 J m−2.36,37

First, one can see in Fig. 4 that the stability parameter S of
the n=0 mode becomes zero in the limit q→0, exhibits a
maximum, and becomes negative for large values of q. This
behavior is very similar to what has been found by Spencer
et al.10 considering semi-infinite substrates. Thus, for this
mode and wave numbers q�0.17 nm−1 the amplitude of the
perturbation would grow exponentially, corresponding to a
roughening of the surface. Besides, we mention that for the
n=0 mode, positive values of S can be found even for van-
ishing m, i.e., vanishing strain. In this case the maximum of
S is located at about 2�
2R2, which corresponds to the
wavelength of the classical Plateau-Rayleigh instability.38,39

Returning to Fig. 4, the n=1 mode exhibits a positive
nonzero y-axis intercept and it can easily be derived that for
n=1,

lim
q→0

S =
2mR1

2�1 + ���R2��1 − 2�� + 2GmR1
2�1 + ���

�R2
7�1 − ��

.

�75�

One can see that for ��0.5 and positive surface stress �, the
y-axis intercept of the n=1 mode is always positive. The n
=2 mode on the other hand is negative for all wave numbers
q. Thus, for the parameters chosen, only the n=0 and n=1
modes can cause a roughening of the surface and only for
sufficiently long wavelengths.

Due to the exponential time dependence of Eq. �74�, the
perturbation having the largest values of S will grow the
fastest. We will characterize this fastest growing mode by its
values Sfg, qfg, and nfg. In Fig. 4 the fastest growing mode
has nfg=1 and qfg�0.7 nm−1. In the following discussion
we will mainly concentrate on the properties of the fastest
growing modes and in particular on the dependencies of Sfg
and nfg on different parameters.

We first examine the properties of nfg. In Fig. 5 nfg
is shown as a function of the core radius R1 and the shell
thickness R2–R1 assuming a positive surface stress
of �=1.0 N m−1. The misfit parameter is taken to be
m=−0.044, which approximately corresponds to the misfit of
a Si shell grown on a Ge core. One can see in Fig. 5 that for
smaller shell thicknesses and/or larger radii, nfg becomes
larger and larger. However, most interesting is the compari-
son to the results for m= +0.044, which are not shown here,
for they are too simple. For m= +0.044 and thickness and
radius variations as shown in Fig. 5, the fastest growing
mode always has nfg=0. This difference in the nature of the
fastest growing mode between m= +0.044 and m=−0.044 is
a consequence of surface stress and can be understood by
considering the −
̄ij�̃ij term in Eq. �73�. Due to the boundary
conditions at the nanowire surface, surface stress creates an
additional compressive strain in the regions of positive cur-
vature. Thus, in addition to the misfit induced strain, �̃ij will
also contain terms that are proportional to the product of the
surface stress � with curvature 
. The multiplication with
−
̄ij will then create terms that are proportional to −m�
.
This contribution to S can either be positive or negative,
depending on the sign of m�. So for positive � and negative

m, as shown in Fig. 5, this contribution will increase the
value of S for those modes that have a large surface curva-
ture, i.e., a large n. This means that including the contribu-
tion of a positive surface stress has the effect of increasing
the growth rate of modes with large n. The opposite is true
for positive m and positive �, in which case surface stress
stabilizes the surface with respect to the large n modes; with
the result that the n=0 mode becomes the fastest growing
mode.

We now focus on the stability parameter of the fastest
growing mode. Figure 6 shows the decadic logarithm of Sfg
as a function of core radius and shell thickness for m
= �0.044 assuming a positive surface stress of �
=1.0 N m−1. The m= +0.044 and m=−0.044 cases, shown
in Fig. 6, approximately correspond to Si-core-Ge-shell and
Ge-core-Si-shell structures, respectively. The first feature
that becomes immediately apparent is the strong dependence
on the shell thickness. In both cases, m= +0.044 and
m=−0.044, an increase in the shell thickness from 1 to 5 nm
leads to a decrease in Sfg by at least 1 order of magnitude.
Thus, concerning the overall stability one has to conclude
that the initial phase of growth, where the shell is thinnest, is
most critical with regards to a roughening of the surface. For
experimentalists, this could signify that first growing an
amorphous shell and then recrystallizing it in a second step
might actually be the more promising approach because in
this way one could possibly circumvent the instability prob-
lems occurring at very small shell thicknesses. The most in-
teresting result, however, is the pronounced minimum one
can find in Fig. 6�b� at a shell thickness of 1 nm and a core
radius of 5 nm. The existence of this minimum means that
one way of reducing the tendency for roughening is to go to
smaller core radii. By reducing R1 from R1=25 nm to R1
=5 nm, one can achieve a reduction in Sfg by as much as 1

FIG. 5. nfg as a function of the core radius R1 and the shell
thickness �R2−R1� for m=−0.044 using G=46 GPa, �=0.26, �
=1.0 N m−1, and �=1.5 J m−2.
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order of magnitude, which means a significant increase in
stability.

To see whether this minimum is also present for different
values of m, and whether this is just an effect of considering
surface stress, log10�Sfg� is shown in Fig. 7 for a fixed shell
thickness of 1 nm as a function of the core radius R1 and the
misfit parameter m. Surface stress is neglected now. One can
see in Fig. 7 that Sfg shows a pronounced dependence on m.
A strong m dependence could be expected, since the stability
critically depends on the elastic energy of the strain field,
which is proportional to m2. The minimum of Sfg, which
could be seen in Fig. 6, is also present in Fig. 7, though only
for large misfits m�0.03. Thus, one has to conclude that the
existence of such a radius maximal surface stability is not
just an effect of surface stress but a general feature.

One may ask whether this whole discussion on which one
is the fastest growing mode does have any practical rel-
evance. We believe it has, and to support this statement, the

experimental results of Pan et al.14 are reprinted in Fig. 8.
One can see in their case the deposition of Ge on thick Si
nanowires, with diameters in the range of about 100 nm led
to the development of Ge-rich islands on the surface, with
the island size being in the range of 30–50 nm. What is so
interesting about these islands is that they appear to be non-
randomly distributed. Instead of a random distribution, Fig. 8
shows islands that are located in two separate rows on oppo-
site sides of the nanowire and aligned along the axial direc-
tion. With our previous discussion in mind, it becomes clear

FIG. 6. log10�Sfg� as a function of the core radius R1 and the
shell thickness R2−R1. �a� m= +0.044 �Si-core-Ge shell� and �b�
m=−0.044 �Ge-core-Si shell� using G=46 GPa, �=0.26, �
=1.0 N m−1, and �=1.5 J m−2.

FIG. 7. log10�Sfg� as a function of the core radius R1 and the
misfit parameter m for a fixed shell thickness of 1 nm using G
=46 GPa, �=0.26, �=0 N m−1, and �=1.5 J m−2.

FIG. 8. �a� Bright-field transmission electron microscopy and
�b� annular dark-field scanning tunneling electron microscopy im-
ages of the Ge islands deposited on Si nanowires. For more detailed
information, see Ref. 14.
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that such a behavior–one island on one side, one island on
the opposite site–is consistent with an n=2 mode being the
fastest growing mode.

We can compare how this experimental finding fits to the
results of our calculation. We have seen in Fig. 6 that the
shell is most unstable in the initial phase of growth. Thus, we
assume that the actual mode of surface instability is fixed by
the fastest growing mode of the initial phase of growth, e.g.,
at a shell thickness of 1 nm. Concerning the misfit at the
interface, Pan et al.14 found that the Ge content of islands is
reduced to 75%–85% Ge. Supposing Si-Ge interdiffusion to
be even more pronounced in the initial phase of growth, a
misfit of m=0.02, corresponding to a shell composition of
about half Si half Ge, seems to be a reasonable estimate.
Here we neglect the interplay between the morphological
and compositional instability.40,41 Under these conditions—a
shell thickness of 1 nm, m=0.02, R1=50 nm, G=46 GPa,
�=0.26, �=1.5 J m−2, and �=0 N m−1—the n=2 mode in-
deed becomes the fastest growing mode. The maximum of
this n=2 mode occurs at a wave number qfg�0.07 nm−1,
corresponding to a wavelength of about 90 nm, which
roughly fits to the experimental results of Pan et al.14 repro-
duced in Fig. 8. In this context, however, it must be men-
tioned that the outcome of the calculation, in particular re-
garding the question of the fastest growing mode, strongly
depends on the actual choice of parameters.

To conclude, we have performed a linear stability analysis
for misfit-strained core-shell nanowires considering nonaxi-
ally symmetric modes and surface stress. Within the frame-
work of our model we could show that the surface is most
unstable when the shell thickness of the order 1 nm or less.
Consequently, the initial phase of growth would be most
critical with respect to roughening of the surface. In addition,
our model shows that for m�0.03 there exists a core radius
of maximum stability, which means that it should be easiest
to produce cylindrical core-shell nanowires with a core di-
ameter of about 5–10 nm. Agreement with experimental re-
sults reported by Pan et al.14 could be obtained for a certain
range of parameters.
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APPENDIX A: LINEARIZED SURFACE DIFFERENTIAL
OPERATORS AND CURVATURE

The vector Rs=Rsr̂+zẑ, with Rs given by Eq. �1�, defines
the position of a point on the surface of the nanowire. Fol-
lowing the work of Weatherburn,42 let us define two vectors
r1 and r2,

r1 =
1

Rs
��Rs = ���

1

0
� , �A1�

r2 = �zRs = ��z

0

1
� , �A2�

with

�� = �
n

R2
cos�qz�sin�n�� , �A3�

�z = �q sin�qz�cos�n�� . �A4�

Then the outward normal of the perturbed shell surface is
given by42

ñ�2� = H−1r1 � r1 = H−1� 1

��

�z
� , �A5�

where H=
1−��
2 +�z

2 is a normalization factor that, how-
ever, in a linear approximation becomes equal to 1. With
these prerequisites, the surface gradient �s can now be ob-
tained,

�s = H−2�r2 � ñ�2��
1

Rs
�� + H−2�ñ�2� � r1��z

=
1

H2� − ��

1 + �z
2

− �z��

� 1

Rs
�� +

1

H2� − �z

− �z��

1 + ��
2 ��z.

Ignoring terms of second and higher order in � gives the
linearized surface gradient

�s = �− ��Rs
−1�� − �z�z

Rs
−1��

�z
� . �A6�

Using the above results the linearized surface divergence act-
ing on the vector A=Arr̂+A��̂+Azẑ reads

�s · A = � 1

Rs
−

��

Rs
�� − �z�z	Ar +

1

Rs
��� + ���A� + �zAz.

�A7�

The linearized surface Laplacian then becomes

�s = �s · �s =
��

Rs
2 �� +

1

Rs
2��

2 −
�z

Rs
�z + �z

2. �A8�

To zeroth order in � this becomes equal to Eq. �67�.
The curvature of the surface can most easily be obtained

by calculating the divergence of the normal vector43 using
Eq. �A7� together with Eqs. �A3� and �A4�.


 = �s · ñ�2� =
1

Rs
+ �� n2

Rs
2 + q2	cos�qz�cos�n�� . �A9�

By inserting expression �1� for Rs and using the first order
expansion of �1+x�−1= �1−x�, this finally gives
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 = �s · ñ�2� =
1

R2
+ ��n2 − 1

R2
2 + q2	cos�qz�cos�n�� .

�A10�

APPENDIX B: SURFACE BOUNDARY CONDITIONS

According to Alexander and Johnson33 the following
boundary conditions have to be applied to a liquid fluid in-
terface at equilibrium,


n + Pfn − �s · T = 0, �B1�

where T is the Cauchy stress tensor and Pf is the pressure in
the fluid. For a solid, if the surface stress is isotropic, i.e.,

�ij =��ij, then T can be expressed as a projection onto the
surface43 T=��1−n � n�. Additionally, exploiting the fact
that �s ·n=
 gives


n + Pfn + �
n = 0, �B2�

which for n= ñ�2� is equivalent to Eq. �25�. The solution of
the first order boundary condition problem assuming equal
elastic constants for core and shell can be obtained by solv-
ing the following set of equations for the unknowns d2, f2,
and g2:

0 = �R2��n2 − 1 + R2q2� +
G�n − 1�R2�

1 − 2�
�6g2 − 8g2� − d2q��n1 −

2G

q
�8g2�1 − n�n�1 − �� − �f2 + g2��3 − 2��R2

2q2

− �2g2n + d2q��n − n2 − R2
2q2��In�qR2� − 2GR2��f2 − g2�n�5 − 4�� − d2q + �f2 + g2��4 − 4� + n2 + R2

2q2��In+1�qR2� ,

�B3�

0 = −
2G�mnR1

2�1 + ��
R2�1 − ��

+
G�n − 1�R2

2
�6g2 − 8�g2 − d2q��n1 +

G

q

2n�n − 1��d2q − 2g2�4 − 4� − n�� + 2�n�f2 + g2�

+ 2�f2 − g2��1 − ���R2
2q2�In�qR2� + 2GR2�d2qn − f2�1 + n��4 − 4� + n� + g2�1 − n��4 − 4� − n��In+1�qR2� , �B4�

0 = −
�q�R2��1 − �� + 2GmR1

2�1 + ���
1 − �

+
GR2

2q

2
�6g2 − 8�g2 − d2q��n1 + 2GR2�d2nq − 2g2n�2 − 2� − n�

+ �f2 + g2�R2
2q2�In�qR2� + 2GR2

2q�d2q − �f2 − g2�n + 2�f2 + g2��1 − ���In+1�qR2� . �B5�
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