Ordered Iron Oxide Nanotube Arrays of Controlled Geometry and Tunable Magnetism by Atomic Layer Deposition

Julien Bachmann,*† Jing Jing,† Mato Knez,† Sven Barth,‡ Hao Shen,‡ Sanjay Mathur,‡ Ulrich Gösele,‡ and Kornelius Nielsch*†

Max Planck Institute of Microstructure Physics, Am Weinberg 2, 06120 Halle, Germany, and Leibniz Institute of New Materials, CVD Division, Im Stadtwald, Geb. 43A, D-66041 Saarbruecken, Germany

Received April 18, 2007; E-mail: bachmann@mpi-halle.de; knielsch@mpi-halle.de

The interest in arrays of pseudo-one-dimensional ferromagnetic nanoobjects stems from their potential application to high-density data storage. This communication reports on the fabrication of iron oxide nanotubes by atomic layer deposition (ALD) and the opportunities thus afforded in the magnetic realm.

Among the different geometric types of objects, tubes offer an additional degree of freedom in their design as compared to wires, in that not only the length and diameter can be varied but also the thickness. Changes in thickness are expected to strongly affect the mechanism of magnetization reversal and thereby the overall magnetic response—in particular, the remnant magnetization. The physics of ferromagnetic nanotubes, however, have remained ill-defined to date for lack of systems amenable to systematic experimental variations in the geometric parameters and study of the corresponding variations in the magnetic behavior. Common experimental limitations include difficult synthesis of magnetic tubes of sub-100 nm diameter, granularity of the tube structure, and inhomogeneities in thickness and/or diameter. In contrast to this, atomic layer deposition (ALD) of magnetic materials can be applied to ordered porous substrates to yield arrays of smooth tubes with a geometry that is tightly controlled and widely tunable.

Our focus on iron oxides results from their unique position among the magnetic materials in terms of abundant availability and biocompatibility.

Water and the homoleptic dinuclear iron(III) tert-butoxide complex, Fe₂(ΟBu)₆, were used for ALD of Fe₂O₃. When the Fe₂(ΟBu)₆ precursor was heated to 100 °C, a temperature window was found between 130 and 170 °C in which the solid deposits in amounts proportional to the number of reaction cycles. At lower temperatures, deposition does not occur as judged from the absence of color. The onset of Fe₂(ΟBu)₆ thermal decomposition sets the upper limit of ALD. When the process is carried out with a self-ordered porous anodic alumina membrane as the substrate, the internal walls are covered conformally with a smooth layer of Fe₂O₃, yielding arrays of tubes of aspect ratios up to 100, the growth rate being 0.26 (±0.04) Å cycle⁻¹, as displayed in Figures 1 and S9.

The results are unaffected by preliminary and/or subsequent ALD of ZrO₂ or TiO₂, which can be used to facilitate the preparation of samples for electron microscopy (see Supporting Information). X-ray photoelectron spectroscopy (XPS) confirms the identity of the deposited material to be Fe₂O₃, albeit with a high carbon content (Figure S6). The amount of C decreases with depth, which could be due to residual superficial tert-butoxide ligands unhydrolyzed by their first exposure to water. Selected-area electron diffraction (SAED) indicates that the tubes are nanocrystalline, with only very short-range order. Relative to the ALD processes reported to date for iron metal or its oxides, based either on an iron(II) amidinate...
well-controlled chemical synthesis in the context of solid-state nanobjects. More importantly, our synthetic approach offers a unique opportunity to vary the geometry of the tubes at will and in a tightly controlled fashion. Figure 2 focuses on Fe₃O₄ tubes of 50 nm outer diameter and shows the dramatic evolution of their magnetic properties when the wall thickness d_w is varied. Soft ferromagnetism is observed in the limit of very thin tubes, with vanishing remnant magnetization and coercivity. Increasing the thickness of the Fe₃O₄ tubes yields a monotonic improvement of their magnetic properties up to an optimum situated near $d_w = 13$ nm. Further thickness increases are accompanied by receding remanence and coercivity. While our semiquantitative micromagnetic (Oommf) simulations of a single tube isolated in vacuum allow one to expect the initial increase in H_c with d_w, they do not reproduce the trend observed for 13 nm < d_w < 20 nm (Figure S7). Consequently, we ascribe the latter to the interaction of each tube with the stray fields produced by the array—an effective antiferromagnetic coupling between neighboring tubes, which reduces H_c as previously demonstrated for the case of nickel nanowires.\(^{14}\) Indeed, the stray field produced by the ensembles of nanotubes at magnetic saturation are significant, on the order of 45 mT for $d_w = 7$ nm and 85 mT for $d_w = 15$ nm (See Supporting Information). The experimental magnetic anisotropy of the tube arrays further corroborates our interpretation, in that applying the external field H perpendicular to the long axis z of the tubes instead of parallel to it results in large H_c values (on the order of 60–70 mT, virtually independent of d_w, Figure S3). This observation, which contrasts the situation of isolated tubes (presenting the easy magnetization axis on z), is a recognized hallmark of strong interactions between magnetic neighbors.\(^{16}\)

The results of this communication highlight the importance of a well-controlled chemical synthesis in the context of solid-state nanophysics.\(^{17}\) For the preparation of well-defined, tunable, ordered nanostructures, ALD has proven to be the ideal method. It has enabled us to observe a strong size dependence in the magnetism of Fe₃O₄ nanotubes and identify an optimal thickness. A more thorough understanding of the phenomenon unveiled here will be required for engineering future high-density data storage systems. Our findings warrant detailed analytical investigation of the ALD reaction (particularly with regard to the C content of the deposited film), further experimental study on the magnetism of nanotube arrays and its dependence on geometry, as well as theoretical modeling of the magnetization reversal in such structures.

Acknowledgment. We thank L. Zhang for experimental assistance. This work was supported by the Bundesministerium für Bildung und Forschung: 03N8701 (MPI), 03X5512 (INM). S.M. thanks the Saarland State and the Leibniz Association for financial support. J.B. acknowledges the A. von Humboldt Foundation for a postdoctoral fellowship (3-SCZ/1122413 STP).

Supporting Information Available: Experimental procedures, hystereses at 5 K and in perpendicular applied field, temperature-dependent magnetization, original SEM micrograph for Figure 1a, XPS data, micromagnetic simulations, stray field calculation, saturation of the ALD reaction, TEM micrograph of tubes in aspect ratio ≈ 100. This material is available free of charge via the Internet at http://pubs.acs.org.

References

3. More importantly, our synthetic approach offers a unique opportunity to vary the geometry of the tubes at will and in a tightly controlled fashion. Figure 2 focuses on Fe₃O₄ tubes of 50 nm outer diameter and shows the dramatic evolution of their magnetic properties when the wall thickness d_w is varied. Soft ferromagnetism is observed in the limit of very thin tubes, with vanishing remnant magnetization and coercivity. Increasing the thickness of the Fe₃O₄ tubes yields a monotonic improvement of their magnetic properties up to an optimum situated near $d_w = 13$ nm. Further thickness increases are accompanied by receding remanence and coercivity. While our semiquantitative micromagnetic (Oommf) simulations of a single tube isolated in vacuum allow one to expect the initial increase in H_c with d_w, they do not reproduce the trend observed for 13 nm < d_w < 20 nm (Figure S7). Consequently, we ascribe the latter to the interaction of each tube with the stray fields produced by the array—an effective antiferromagnetic coupling between neighboring tubes, which reduces H_c as previously demonstrated for the case of nickel nanowires.\(^{14}\) Indeed, the stray field produced by the ensembles of nanotubes at magnetic saturation are significant, on the order of 45 mT for $d_w = 7$ nm and 85 mT for $d_w = 15$ nm (See Supporting Information). The experimental magnetic anisotropy of the tube arrays further corroborates our interpretation, in that applying the external field H perpendicular to the long axis z of the tubes instead of parallel to it results in large H_c values (on the order of 60–70 mT, virtually independent of d_w, Figure S3). This observation, which contrasts the situation of isolated tubes (presenting the easy magnetization axis on z), is a recognized hallmark of strong interactions between magnetic neighbors.\(^{16}\)

Figure 2. Magnetic hystereses of Fe₃O₄ nanotube arrays (50(±5) nm outer diameter, 105(±10) nm center-to-center distance, various wall thicknesses d_w) in porous alumina at 300 K, in a magnetic field H applied along the tubes (z); a paramagnetic contribution due to the template was subtracted, and the z moment μ_z was normalized. Inset: properties (blue, coercivity H_c; red, remanence relative to 1 T) for $2.6(±0.7) \leq d_w \leq 18.2(±1.9)$ nm.

JA072465W