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Recurrence and Photon Statistics in Fluorescence Fluctuation Spectroscopy
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We report on fluorescence fluctuations of nanoparticles diffusing through a laser focus. Subject to an
intensity threshold the fluorescence signal is transformed into time traces of on and off periods. The
distribution functions of the experimental on and off times follow power laws t�� over several orders of
magnitude with exponents � ’ 1:5� 2. At long times the distribution functions cross over to exponential
decays. For the interpretation of the experimental data a diffusion-reaction equation is proposed which
covers both, the diffusion controlled recurrence and the photon statistics as the relevant processes.
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Confocal detection of the fluorescence originating from
single molecules or nanoparticles diffusing freely in solu-
tion has attracted much attention in various fields of life
sciences [1–5]. The particular charm of this method lies in
its capability to study processes in living cells under close
to physiological conditions [6]. Briefly, a microscope ob-
jective is used both for diffraction-limited focussing of
laser light onto the sample and for collection of the emitted
light from the focal region thus defining a confocal volume
from where particles’ fluorescence is detected. Several
methodologies have been developed for the fluorescence
data analysis, of which the fluorescence correlation spec-
troscopy (FCS) [4], the fluorescence intensity distribution
analysis (FIDA) [7], and the fluorescence burst size distri-
bution analysis (BSDA) [8] are the most widely employed
techniques. For the identification of individual fluores-
cence bursts and the recognition of single molecules in
the detection volume an intensity-threshold criterion is
usually introduced [9]. Prominent problems encountered
in this type of analysis are the assignment of consecutive
bursts to the same molecule reentering or to a different
molecule entering the focal volume and the uncertainty
imposed by the photon statistics.

In this Letter we report on nanometer sized fluorescent
spheres diffusing freely through a laser focal volume. Upon
a threshold number � of photons, probability distribution
functions (PDFs) of on and off periods are determined. It is
shown that diffusion and photon statistics are essential for
the description of the observations and that a diffusion-
reaction equation allows for the discussion of all the fea-
tures observed in the on and off PDFs. Thus the present
investigation is concerned with a classical problem of
diffusion, namely, the probabilities of freely diffusing par-
ticles to escape from the area of initialization and of cross-
ing boundaries for the first time, i.e., first-passage events
[10,11].

For the experiment, yellow fluorescent latex spheres of
32–200 nm diameter (Sigma-Aldrich) were suspended in
water at concentrations equivalent to ’ 10�11 M. A home-
made scanning confocal optical microscope was applied
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with a � � 488 nm solid state laser as the excitation source
and single photon counting avalanche photodiodes
(SPADs, SPCM AQ-14, Perkin-Elmer) as detectors featur-
ing a dark count rate of 100 s�1. An oil-immersion micro-
scope objective (Apochromat 100� 1:4, Nikon) was used
for both diffraction-limited focusing of the light and col-
lection of the fluorescence. The laser intensity was typi-
cally between 5 and 300 nW thus avoiding saturation
effects as well as biased diffusion due to restoring forces.
Transient intensities were recorded by collecting photons
in bins of � � 100 �s width. For several threshold values �
the transient intensities were translated into binary time
traces of on and off periods. An example of the transient
intensity trace is shown in Fig. 1 on different time scales
together with the on and off periods in a bar-code–like
style. The patterns of the on and off periods show a self-
similar structure indicating a pronounced scaling behavior
of the on and off periods.

The binary time traces were then used to determine
PDFs of the on and off times. Examples of PDFs are given
in Fig. 2. By inspection of these PDFs, one notices three
different time regimes. At short times there is a transition
from a flat to a power-law regime governed primarily by an
exponent � � 3=2 for off and � ’ 2 for on times. At long
times the data indicate transitions to exponential decays
where with increasing � the onset of the exponentials occur
at shorter and longer times for on and off states, respec-
tively. Surprisingly, clear deviations in the short time re-
gime between the on- and off-PDFs for small thresholds �
are visible that almost vanish with increasing �.

Our model is based on particles diffusing freely through
the confocal volume. We define a space dependent instru-
ment response function (IRF) ��r�, which denotes the
average number of photons per bin time detected for a
stationary particle located at position r. ��r� thus results
from the collective fluorescence of the bead’s chromo-
phores and from the collection-efficiency function [1].
Depending on the setup ��r� shows characteristic shapes
with primarily Gaussian form in the focal plane and power
law form in the axial direction with oscillations super-
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FIG. 1. Experimental intensity time traces and on and off
periods of 200 nm beads. Intensities are given in units of photon
counts. On the intermediate panels the on periods are given by
black bars for � � 3 on consecutively zoomed-in scales with
magnification factors of approximately 20. The top two and the
lowest two panels refer to the top and bottom time scale,
respectively.

PRL 93, 260601 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004
imposed. We assume an identical shape for the laser-
intensity and collection-efficiency function for the confo-
cal setup and write for the IRF in cylinder coordinates
�	; z�

��	; z� � �0

�
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0

w2�z�
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�
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2
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where �0 is the number of photons per bin for a particle at
the center and w stands for the z-dependent focal waist
FIG. 2. Experimental and calculated on and off PDFs. Pairs of
curves give on PDFs (lower line) and off PDFs (upper line) for
thresholds �, as indicated, and are shifted vertically for clarity.
The wiggly lines give the experimental data of Fig. 1 and the
smooth lines are the calculations. Dotted and dashed lines are
power laws with exponents � � 3=2 and 2, respectively.
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w2�z� � w2
0�1� �z=z0�

2	. The ratio z0=w0 was determined
by direct measurement of the focal IRF yielding z0=w0 ’
3=2 which corresponds to a geometrical length to width
ratio of ’ 3, visible in Fig. 4. Based on Poissonian statistics
the probability of n photons per bin is U�n; r� �
e���n=n! of a particle located at r. Subject to �we denote
by p��r; �� the off-state probability with n 
 �

p��r; �� �
X�
n�0

U�n; r�: (2)

The complementary probability p� � 1� p� then de-
notes the on-state probability with n > �. Here and in the
following we denote by the subscripts � and � the on
and off states. We next define the probability of an interval
for N consecutive bins of on state,  ��N� � p��r0� �
p��r1� � � �p��rN�p��rN�1�, which depends on the par-
ticular realization of the diffusion path with positions
r0; r1; r2; � � � at times t0 � 0; t1 � �; t2 � 2�; � � � .
Averaging over all possible realizations of the diffusion
path leads to the space averaged probability density of on
periods

h ��t�i � ��1hp��r0�p��r1� � � �p��rN�p��rN�1�i; (3)

where the time is discretized according to t � N� and
where an appropriate normalization is taken into account.
h ��t�i is thus the probability density for the on state to end
in the interval �t; t� dt	. The derivation of the off proba-
bilities h ��t�i follows from the same reasoning by simply
interchanging the subscripts � and �. The description of
Eqs. (2) and (3) can be generalized to several particles in a
given volume and straightforward calculations can be car-
ried out using Monte Carlo simulation. However, it is not
obvious, how to derive analytical expressions for the on
and off PDFs. We therefore restrict the approach assuming
that the concentration is small so that to a good approxi-
mation there is only one particle in the focal volume.
Within this model assumption we consider first two limit-
ing cases: strong fluorescence and slow diffusion, and then
propose a diffusion-reaction equation for the general case.

In the limit of strong fluorescence we assume that the
recorded photon stream is so strong that photon shot noise
is negligible. Accordingly, the border of probability where
the diffusing particle changes state from on to off and vice
versa becomes sharp. The task is thus transformed into a
first-passage problem for particles to reach a boundary for
the first time. The particles are initiated close to the bound-
ary, either inside for on or outside for off states, respec-
tively. First-passage probabilities are calculated from the
PDFs P��r; t� which obey the diffusion equation subject to
an absorbing boundary [10]. For the spherical symmetric
case

@tP��r; t� � Dr�2@rr2@rP��r; t�; (4)

P��r; 0� � ��r� r0�=�4�r
2
0�; P��ra; t� � 0; (5)
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FIG. 3. First-passage PDFs for two limiting cases. (a) h ��t�i
of Eqs. (6) and (7) based exclusively on diffusion. The ratio of
the initial displacement and the radius of the absorbing sphere is
�:ra � 1:10 and the particle density is given by 4�c0r3a=3 �
0:02. Time t is given in units of t0 � r2a=D. The dash-dotted line
is a power law with exponent � � 3=2. The inset illustrates a
diffusion path and first passages in 2D with a permeable circle.
The shaded area indicates the homogeneous initial density
C�r; 0� of bulk particles. (b) h ��t�i based exclusively on photon
statistics. Calculations of Eq. (12) are given by dashed lines for
�0 � 100 and for � values, as indicated. The thin lines indicate
power laws t�� from bottom to top with exponents: 2.25, 2.15,
2.0, 1.9.

PRL 93, 260601 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004
where ra denotes the radius of the absorbing boundary. The
small initial displacement � � jr0 � raj we set equal to
the spatial resolution given by the diffusion length within
the bin time, �2 � 2D�. From P��r; t� we calculate the
corresponding survival probabilities S��t� and the first-
passage density h ��t�i according to

S��t� � 4�
Z 1

0
P��r; t�r2dr; h ��t�i � �dS�=dt:

(6)

While the on states are limited by the outer absorbing
boundary the particles initiated outside of the absorbing
boundary may escape to infinity with probability equal to
�=r0 [10]. The off times are thus eventually limited by the
arrival of other bulk particles. Within the model of a
discrete absorbing boundary we provide an accurate de-
scription of the survival probability subject to the joint
arrival of a particle initiated close to the surface and bulk
particles. We take into account the independence of parti-
cles and write for the survival probability S� that no
particle has reached the boundary by time t and corre-
sponding first-passage density

S � � S�Sb; h �i � �dS�=dt: (7)

Here Sb refers to the bulk particles. From a stationary
approach one may see that the initial condition for the
spatial density C�r; 0� of bulk particles is homogeneous
at the instance when the last particle leaves the focal area.
Therefore, making use of the Green’s function approach,
the evolution of the bulk particle density is

C�r; t� � 4�c0
Z 1

rb
P�r; tjr0�r

2
0dr0; (8)

where c0 is the particle concentration and rb denotes the
onset radius of bulk particles and may be equated with r0 or
ra. According to Smoluchovski [12] the rate k�t� of the
particles’ arrival and corresponding survival is

k�t� � 4�Dr2a@rC�r; t�jra ; Sb � e�
R
t

0
k�t�dt: (9)

Using the techniques developed for heat conduction [13]
all the required quantities can be given as series of ele-
mentary functions. For short times the leading term reads

h �i � t�3=2e���=2t� (10)

and for long times

h �i � e���2Dt=r2a�; h �i � t�1=2e�4�c0raDt: (11)

The calculated PDFs in Fig. 3(a) show three regimes. At
short times, the behavior is governed by an increase result-
ing from the time required for the particle to approach the
boundary. The second regime shows a power-law behavior
with exponent � � 3=2, which manifests the typical return
PDF in 3D [10]. The long-time behavior is governed by
exponentials because of the finite volume imposed by the
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absorbing boundary for on states and because bulk parti-
cles reach the absorbing boundary for off states. We note
the characteristic transition from the power law to the
exponential decay which is different for on and off states.
We further note that Fig. 3(a) captures already the majority
of the features observed experimentally in Fig. 2, namely,
the crossover at short times, the intermediate power law
and the exponential at long times. However, contrary to the
observations, the on and off PDFs show identical patterns
except for the exponentials at long times.

We next consider the slow diffusion limit where we
assume that the time of crossing the focal volume is
much larger than the time scale of h ��t�i. In this case
the average in Eq. (3) reads

h ��t�i � ��1hp2
��r�p

N
��r�i; N � t=�: (12)

Numerical calculations were carried out for ��r� of Eq. (1)
and results of the PDFs are shown in Fig. 3(b). Power laws
fitted to the numerical PDFs yield exponents of � ’ 2.
From a rough analysis of the asymptotic behavior the
estimated decay follows a power law with exponent � �
2 and with logarithmic corrections. We notice that, con-
trary to the diffusion controlled PDFs in Fig. 3(a), here the
PDFs of the on and off states differ from each other.
Similar deviations arise also for spherical quadratic
Lorentzian ��r�, however, the deviations are much smaller
for pure Gaussian ��r�. Thus deviations result from the
asymmetry imposed on the p� and p� functions subject to
a mirror placed tangentially at the maximum location of
p�p�.

Motivated by the above analysis we propose the follow-
ing diffusion-reaction equation for the general case still
assuming small concentrations so that primarily only one
1-3
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FIG. 4. Change of state probabilities p�p� in the focal zone
for ��	; z� of Eq. (1) and for �0 � 100 and z0=w0 � 3=2. The
outer and the inner shaded area result from thresholds � as
indicated. On the left and top the full and dashed lines denote
the probabilities p�p� in the focal plane and along the z axis,
respectively. The transverse and longitudinal IRFs ��	; 0� and
��0; z� are given by dash-dotted lines.
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particle is in the focus

@tP��r; t� � �Dr2 � K��r�	P��r; t�: (13)

We equate the initial condition for single particles P��r; 0�
with the stationary state probability of the particle to
change state at location r. Similarly, we propose that the
bulk density C�r; t� obeys Eq. (13) for the minus state
subject to homogeneous initial conditions limited by
p��r�, so that

P��r; 0� � N p��r�p��r�; C�r; 0� � c0p��r�;
(14)

where N accounts for normalization. Similarly, we equate
the space dependent reaction rate K��r� with the probabil-
ity of the particle located at r to generate a number of
photons which overcomes the � criterion of changing state

K��r� � ���1 lnp��r�: (15)

We notice that in the limit of strong fluorescence, K�

converges to a step function so that the first-passage prob-
lem is recovered. In the limit of slow diffusion the diffusion
term in Eq. (13) can be dropped and taking Eq. (6) into
consideration one can show that Eqs. (12) and (13) are
compatible. The survival is calculated according to Eq. (6)
and the rate of bulk arrival is k�t� �

R
K��r�C�r; t�dr.

In Fig. 4 the initial conditions p�p� are displayed. A
pronounced asymmetry is clearly visible for � � 5.
Calculated PDFs are shown in Fig. 2 for the parameters
26060
w2
0=D� � 670 and c0w3

0 � 1:5� 10�3 estimated indepen-
dently from FCS and �0 � 60 from FIDA, respectively.
The calculations are in good agreement with the observa-
tions, particularly, the deviations between the on and off
PDFs are well reproduced. The residual deviations be-
tween calculation and experiment turned out to depend
sensitively on the shape of the IRF.

In conclusion, we have shown that on and off PDFs
provide a powerful tool for the investigation of recurrence
in fluorescence fluctuation spectroscopy. The proposed
diffusion-reaction equation provides an accurate descrip-
tion of the PDFs taking into account diffusion and photon
statistics on equal footing and including the multiple par-
ticle problem for off states. Contrary to FCS, the present
method is sensitive to the focal shape. Deviations between
the on and off PDFs result primarily from the non-Gaussian
shape of the IRF. We expect that the experimental restric-
tion of the diffusion to 1D or 2D would allow us to study
the dimensionality dependence of the recurrence.
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