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Twisted exchange interaction between localized spins embedded in a one- or two-dimensional
electron gas with Rashba spin-orbit coupling
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We study theoretically the Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction in one- and two-dimensions
in presence of a Rashba spin-orbit~SO! coupling. We show that rotation of the spin of conduction electrons due
to SO coupling causes a twisted RKKY interaction between localized spins which consists of three different
terms: Heisenberg, Dzyaloshinsky-Moriya, and Ising interactions. We also show that the effective spin Hamil-
tonian reduces to the usual RKKY interaction Hamiltonian in the twisted spin space where the spin quantiza-
tion axis of one localized spin is rotated.
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There has been a great deal of interest in the field
spintronics where spin degrees of freedom of electrons
manipulated to produce a desirable outcome.1,2 Eminent ex-
amples are given by the giant magnetoresistance~GMR!
effect3–5 and the interlayer exchange coupling in magne
multilayers.6–8 The interlayer exchange coupling is e
plained in the context of Ruderman-Kittel-Kasuya-Yosi
~RKKY ! interaction,9,10 equivalently, or in terms of spin
dependent electron confinement.11,12 The RKKY interaction
is an indirect exchange interaction between two localiz
spins via the spin polarization of conduction electrons.13–16

Recently, much attention has been focused on the effe
the Rashba spin-orbit~SO! coupling in two-dimensiona
electron gases~2DEG!.17 Investigation of the Rashba effec
of 2DEG in semiconductor heterostructures has been sti
lated by the proposition of a spin field effect transistor.18 It
has been established the Rashba SO coupling can be
trolled by means of a gate voltage.19–22 The Rashba effec
has also been observed in 2DEG formed from surface st
electrons at metal surfaces such as Au~111!,23–27 Li/W ~110!
or Li/Mo~110!.28 It has also been found that confinement
the surface state due to atomic steps on vicinal surfaces l
to quasi-one-dimensional~1D! surface states, which also ex
hibit the Rashba effect.29–31

Usually the RKKY interaction yields a parallel or antipa
allel coupling of localized spins~Heisenberg coupling!.
However, if spin of conduction electrons precesses due to
spin–orbit coupling, it can be possible to produce a nonc
linear Dzyaloshinsky-Moriya~DM! coupling of localized
spins.32–34 In this paper, we investigate the RKKY couplin
between localized spins embedded in a 1D- or 2DEG w
Rashba SO coupling. We show that rotation of the spin
conduction electrons due to the Rashba SO coupling caus
twisted RKKY interaction between localized spins whic
consists of three different terms: Heisenberg, Dzyaloshins
Moriya, and Ising interactions. We point out that a perturb
tive treatment of the SO coupling as is usually done32–34 is
valid only for small distances between the localized spins
this case the DM and Ising terms are, respectively, linear
quadratic with respect to the SO coupling strength. In
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limit of large distances, a nonperturbative treatment of
SO coupling is necessary, and one obtains DM and Is
terms that have the same oscillation amplitude as the Hei
berg term, independently of the SO coupling strength. T
peculiar behavior of the twisted RKKY interaction for a pa
of localized spins can be explained by introducing a twis
spin space where the spin quantization axis of one of
localized spins is rotated.

We consider a system consisting of two localized sp
embedded in a 1D- or 2DEG with a Rashba-type spin–o
coupling.17 The Hamiltonian for the conduction electrons
given by

H052
\2

2m
“

21a~2 i\“3 ẑ!•s, ~1!

wherea represents the strength of the spin–orbit couplingẑ
is a unit vector along thez-axis, ands is the vector of Pauli
spin matrices. We assume that the conduction electrons
confined in a wire along thex-axis ~one-dimensional system!
or in thex–y plane~two-dimensional system!. The direction
of the effective electric field of spin–orbit coupling is take
to be along thez-axis for both one- and two-dimensiona
systems.

Since the HamiltonianH0 commutes with the momentum
operator2 i\“, the wave vectork is a good quantum num
ber. The Green function of the conduction electrons in
real space can be expressed as

G~R;z![
1

~2p!DE dDkeik•RG~k;z!, ~2!

where D51 or 2 is the dimension of the system and t
Green function in the momentum space is given by

G~k;z!5Fz2H \2k2

2m
s01a~k3 ẑ!•sJ G21

. ~3!

Heres0 is the (232) unit matrix in the spin space of con
duction electrons.
©2004 The American Physical Society03-1
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The localized spins are denoted byS1 andS2 and located
at positionsR1 and R2, respectively. The coupling betwee
conduction electrons and localized spins is expressed a
s–d interaction Hamiltonian

H15J (
i 51,2

d~r2Ri !Si•s, ~4!

whereJ represents the strength of thes–d interaction. Note
that J has the following dimensionality: (energy
3(length)D.

The total Hamiltonian is given by the sum ofH0 andH1.
We assume that the coupling constantJ is so small that we
can treatH1 as a perturbation onH0. The RKKY interaction
betweenS1 andS2 is calculated from the second order pe
turbation theory as

H1,2
RKKY52

1

p
Im J2E

2`

«F
d« Tr@~S1•s!G~R12;«1 i01!

3~S2•s!G~2R12;«1 i01!#, ~5!

where«F is the Fermi energy,R12[R12R2 , i01 represents
an infinitesimal imaginary energy, and Tr means a trace o
the spin degrees of freedom of conduction electrons.12,35

Let us first consider the one-dimensional case. The Gr
function of conduction electrons in the momentum space
expressed as

G~k;«1 i01!5F«1 i012H \2k2

2m
s02aksyJ G21

. ~6!

After some algebras, Eq.~6! can be written as

G~k;«1 i01!5G0~k;«!s01G1~k;«!sy , ~7!

where the diagonal and off-diagonal Green functions are
fined as

G0~k;«![
m

\2 F 1

k«
22k222kkR1 i01

1
1

k«
22k212kkR1 i01G , ~8!

G1~k;«![
m

\2 F 1

k«
22k222kkR1 i01

2
1

k«
22k212kkR1 i01G

~9!

with k«
2[2m«/\2 andkR[ma/\2.

A straightforward contour calculation gives

G~R;«1 i01!5G0~R;«!s01G1~R;«!sy , ~10!

where

G0~R;«!52 i
m

\2~q1 i01!
eiquRu cos~kRR!, ~11!
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G1~R;«!5
m

\2~q1 i01!
eiquRu sin~kRR!, ~12!

with

q[Ak«
21kR

25A2m

\2
«1kR

2. ~13!

Substituting Eqs.~10!–~12! into Eq. ~5!, and using
the relations G0(2R;«)5G0(R;«) and G1(2R;«)
52G1(R;«), we have

H1,2
RKKY52

1

p
J2 ImFTr$~S1•s!~S2•s!%E

2`

«F
d«G0~R12;«!2

1Tr$~S1•s!sy~S2•s!%E
2`

«F
d«G1~R12;«!

3G0~R12;«!2Tr$~S1•s!

3~S2•s!sy%E
2`

«F
d«G0~R12;«!G1~R12;«!

2Tr$~S1•s!sy~S2•s!sy%E
2`

«F
d«G1~R12;«!2G .

~14!

The traces over the spin operators can be calculated
using the relation (A•s)(B•s)5(A•B)s01 i (A3B)•s,
repeatedly36:

Tr$~S1•s!~S2•s!%52S1•S2 , ~15!

Tr$~S1•s!sy~S2•s!%522i ~S13S2!y , ~16!

Tr$~S1•s!~S2•s!sy%52i ~S13S2!y , ~17!

Tr$~S1•s!sy~S2•s!sy%52~2S1
yS2

y2S1•S2!. ~18!

Thus, using Eqs.~11!–~18! we find

H1,2
RKKY5F1~ uR12u!@cos~2kRR12!S1•S21sin~2kRR12!

3~S13S2!y1$12cos~2kRR12!%S1
yS2

y#, ~19!

where the range functionF1(uRu) is defined as

F1~ uRu![
2J2

p S m

\2D 2

ImE
2`

«F e2iquRu

~q1 i01!2
d«. ~20!

Performing the change of variable«→q and using standard
complex-plane integration techniques, one eventually
tains:

F1~ uRu!5
2J2

p

m

\2 FSi~2qFuRu!2
p

2 G , ~21!

where qF[A2m«F /\21kR
2 and Si() is the sine integra

function.37 The range function of Eq.~21! is the same form
3-2
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as that of the usual one-dimensional RKKY interaction38,39

except that the Fermi wave vectorkF([A2m«F /\2) is re-
placed byqF .

As shown in Eq.~19!, the resulting RKKY interaction
consists of three physically quite different interaction
Heisenberg, Dzyaloshinsky-Moriya, and Ising interactio
The Heisenberg and Ising couplings favor a collinear ali
ment of localized spins. On the contrary, the DM coupli
favors a noncollinear alignment of localized spins. For d
tances~more precisely, forkRuR12u!1), the DM and Ising
terms are, respectively, linear and quadratic in the Ras
SO couplinga; this corresponds to the result obtained fro
a perturbative treatment of the SO coupling. However,
large distances (kRuR12u@1), a perturbative treatment of th
SO coupling would completely fail: indeed, in this regim
one finds that the DM and Ising couplings oscillate with t
same amplitude as the Heisenberg term.

This peculiar twisted coupling of localized spins can
easily understood by introducing the twisted spin sp
where the spin quantization axis of the second localized s
S2 is rotated by an angleu1252kRR12 around they-axis. The
spin operators for the second localized spin in the twis
spin space are given by

S2
x~u12!5cosu12S2

x1sinu12S2
z , ~22!

S2
y~u12!5S2

y , ~23!

S2
z~u12!5cosu12S2

z2sinu12S2
x . ~24!

From the above equations, one can easily show that the i
product ofS1 andS2(u12) is

S1•S2~u12!5cosu12S1•S21sinu12~S13S2!y

1$12cosu12%S1
yS2

y , ~25!

so that the RKKY interaction of Eq.~19! can be expressed a

H1,2
RKKY5F1~ uR12u!S1•S2~u12!. ~26!

Equation~26! shows that in presence of spin–orbit coupli
the RKKY interaction results in a collinear coupling of lo
calized spins in theu12-twisted spin space.

Next we address the two-dimensional case. The Gr
function of conduction electrons now takes the form

G~R;«1 i01!5G0~R;«!s01G1~R;«!~ ẑ3R̂!•s,
~27!

whereR[iRi and R̂[R/R is the unit vector parallel toR.
The Green functionsG0(R;«) and G1(R;«) can be calcu-
lated in the similar way as in Ref. 40. A straightforwa
calculation yields

G0~R;«!52
im

4\2 F S 11
kR

q DH0
(1)@~q1kR1 i01!R#

1S 12
kR

q DH0
(1)@~q2kR1 i01!R#G , ~28!
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G1~R;«!52
m

4\2 F S 11
kR

q DH1
(1)@~q1kR1 i01!R#

2S 12
kR

q DH1
(1)@~q2kR1 i01!R#G , ~29!

whereH0
(1)@ # andH1

(1)@ # are Hankel functions.37 Hereafter,
we restrict ourselves to the regionqR@1 andkR!q. In this
case we can use the asymptotic form of Hankel’s function37

Hn
(1)~z!.A 2

pz
ei (z2(np/2)2(p/4)) ~ uzu→`!. ~30!

Thus we have

G0~R;«!.2 i
m

\2

1

A2pqR
ei (qR2(p/4))cos~kRR!, ~31!

G1~R;«!.
m

\2

1

A2pqR
ei (qR2(p/4))sin~kRR!. ~32!

Without restriction, we can take the coordinate system
that the vectorR is aligned with thex-axis, i.e.,R5Rx̂. Then
the Green function takes the form

G~R;«1 i01!5G0~R;«!s01G1~R;«!sy . ~33!

The RKKY interaction can be obtained in the similar way
one-dimensional system, and one gets~for qFR@1)

H1,2
RKKY.F2~R12!S1•S2~u12!, ~34!

where the range functionF2(R) is given by

F2~R!.2
J2

2p2

m

\2

sin~2qFR!

R2
. ~35!

Equation ~34! is the same as the usual two-dimension
RKKY interaction39,41 except thatkF andS2 are replaced by
qF andS2(u12), respectively. It is reasonable that the twist
coupling of two localized spins takes the same formS1
•S2(u12) as for the 1D system, because forqFR@1 a scat-
tering wave of 2D system behaves like a plane wave.

The 2DEG from surface states at metallic surfaces
good candidates for investigating the twisted RKKY intera
tion. Experiments on Au~111! surfaces have yieldedqF
.0.17 Å21 and kR.0.012 Å21;26 in complete analogy to
the effect of negative gate voltage for 2DEGs at a semic
ductor heterojunction,19,20the adsorption of a noble gas~e.g.,
Xe! produces an effective repulsive potential~because of the
Pauli exclusion principle! and leads to a decrease of the a
erage Fermi wave vector (qF.0.155 Å21) and an increase
of the Rashba splitting (kR.0.015 Å21).26 Furthermore,
quasi-1D surface states can also be obtained for vicinal
faces, such as Au~788! and Au~23 23 21!, with comparable
Rashba splitting.29–31 The distance between magnetic ad
toms deposited on such surfaces can be controlled eithe
rectly by atom manipulation using the tip of a scanning tu
neling microscope, or by exploiting self-organizatio
3-3
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processes. Such systems therefore constitute a versatile
ratory to investigate surface states mediated RKKY inter
tions under the influence of the Rashba effect. WithkR
.0.015 Å21 and a distanceR510 Å the twist angleu
52kRR is of the order of 17o, which is quite sizable. In
particular, due to the twisted nature of the RKKY interactio
very interesting frustration phenomena may be anticipate

In semiconductor heterostructures the twisted RKKY
teraction may also be of great interest, in particular in vi
of possibilities for manipulating entanglement between sp
of quantum dots connected by a wire with Rashba
coupling,42 as needed for a spin-based solid-state quan
computer.43,44 Considering the value of the Rashba coupli
reported for In0.53Ga0.47As/In0.52Al0.48As heterostructure19

one obtains that the twist angleu can be controlled fromu
5p to u53p/2 by a gate voltage forR5400 nm.

In conclusion, we have studied the twisted RKKY inte
action in one- and two-dimensions in presence of Ras
.
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spin–orbit coupling. We have also shown that in the twis
spin space where the spin quantization axis of one locali
spin is rotated, the twisted RKKY interaction is express
in the same form as the usual RKKY interaction. The an
u between the localized spins can be controlled by the
tance between localized spinsR and/or the strength of the
spin-orbit coupling of conduction electrons.

After finishing this work we became aware of the pape45

The twisted spin space we discussed can be justified by
unitary transformation introduced in Ref. 45. We are grate
to Vladimir I. Fal’ko for pointing out this point.
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