
A model system for photonic crystals: macroporous silicon

R. B. Wehrspohn*; 1; 2 and J. Schilling1; 3

1 Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
2 Department of Physics, University Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
3 California Institute of Technology, Pasadena, CA 91125, USA

Received 15 October 2003, revised 4 April 2003, accepted 7 April 2003
Published online 20 June 2003

PACS 42.70.Os, 78.55.Mb

A review of the optical properties of 2D and 3D photonic crystals based on macroporous silicon is
given. As macroporous silicon provides structures with aspect ratios exceeding 100, it can be consid-
ered as an ideal 2D photonic crystal. Most of the features of the photonic dispersion relation have been
experimentally determined and were compared to theoretical calculations. This includes transmission
and reflection of finite and bulk photonic crystals and their variation with the pore radius to determine
the gap-map. All measurements have been carried out for both polarizations independently since they
decouple in 2D photonic crystals. Moreover, by inhibiting the growth of selected pores, point and line
defects can be realized and the corresponding high Q microcavity resonances as well as waveguiding
properties were studied via transmission. The tunability of the bandgap was demonstrated by changing
the refractive index by liquid crystals as well as optically-injected free carriers. Finally different realiza-
tions of 3D photonic crystals using macroporous silicon are discussed. In all cases an excellent agree-
ment between experimental results and theory has been observed.

1 Introduction

From the beginning of research on photonic crystals, a major area of investigation concerned two-
dimensional (2D) photonic crystals [1]. This was mainly caused by experimental reasons as the fabri-
cation of 3D photonic crystals appeared to be more difficult and cumbersome than that of 2D photo-
nic crystals. Additionally the calculation of band structures for 2D photonic crystals is less time con-
suming and a lot of interesting phenomena (e.g. light localization – at least in a plane) can already be
studied in 2D photonic crystals. However an ideal 2D photonic crystal consists of a periodic array of
infinitely long pores or rods so that a structure which approximates this theoretical model has to
exhibit very high aspect ratios (ratio between pore/rod length to pore/rod diameter). Using conven-
tional dry etching techniques only structures with aspect ratios up to 10–30 are possible. To avoid
scattering of light out of the plane of periodicity and to reduce the corresponding loss the so-called
slab structures were developed and thoroughly investigated [2, 3]. In such low-aspect structures, one
relies on guiding of light by total internal reflection in the third dimension and, consequently, deals
with a full 3D problem. On the other hand Lehmann and Gr�ning [4, 5], as well as Lau and Parker
[6] proposed macroporous silicon as a model system for 2D photonic crystals. This system consists of
a periodic array of air pores in silicon. The pores are etched in hydrofluoric acid applying a photo-
electrochemical dissolution process [7, 8]. Using lithographic prestructuring the nucleation spots of the
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pores can be defined at the surface of the n-type
silicon wafer. This also allows to control the pore
pattern and its lattice constant. During the etching
process the backside of the wafer must be illumi-
nated to create electronic holes in the silicon which
are consumed during the etching process. Due to
electrochemical passivation of the pore walls very
high aspect ratios of 100–500 are obtained. As the
fundamental bandgap appears in general for wave-
lengths which are approximately twice the lattice
constant, the pores are 50–250 times longer than the
wavelengths of the corresponding 2D fundamental
bandgap. Therefore, macroporous silicon represents

an excellent system to study ideal 2D photonic crystal properties. In Fig. 1 a structure with a triangular
pore lattice with a lattice constant of a = 700 nm is shown. The pore depth is 100 mm. In the next
paragraphs optical experiments performed with such structures are presented and compared with calcula-
tions assuming a 2D array of infinitely long macropores. The lattice type and the pore depth of the
investigated structures are the same as for the sample shown in Fig. 1 while the interpore distance (lattice
constant) and the diameter of the pores varies in order to meet the experimental requirements. Typically,
high-quality photonic crystals with lattice constants of a = 500 nm to 8000 nm can be produced with this
process. These structures exhibit photonic bandgaps from the near infrared to the far infrared.

2 2D photonic crystals on the basis of macroporous silicon

2.1 Bulk photonic crystals

The dispersion relation for light propagation inside a photonic crystal is calculated using the plane
wave method. Due to the 2D periodicity and the uniformity along the third dimension the light propa-
gating in a 2D photonic crystal splits into E-polarized (E-field parallel to the pore axis) and H-polar-
ized (H-field parallel to the pore-axis) waves. The band structures for these polarizations differ from
each other and so do the bandgaps in width and spectral position. This originates in the different field
distributions: Typically, the electric field of the H-polarized waves is located in the veins of the struc-
tures whereas the electric field of the E-polarized waves concentrates in the connection points of the
veins. Fig. 2a shows an example of a band structure for our system calculated for wavevectors in the
first Brillouin-zone along the path G�M�K�G . The assumed porosity or air filling factor is p
= 0.73 which corresponds to r=a = 0.45 (r = pore radius, a = lattice constant) and the refractive index
of silicon in the infrared is n = 3.4. For a triangular array of pores, a refractive index contrast exceed-
ing 2.7 [9] and for suitable r=a ratios, the bandgaps for E- and H-polarization overlap and a complete
2D photonic bandgap exists. As the refractive index contrast for air pores in silicon amounts to
nSi=nAir = 3.4 in the infrared (IR), these requirements are fulfilled in our system. The band structure
shown in Fig. 2 thus exhibits such a complete bandgap indicated by a grey bar.

In addition to the band structure, the density of photonic states (DOS) is computed as well and
presented in Fig. 2b [13]. In the spectral region of the complete photonic bandgap the DOS is zero,
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Fig. 1 SEM-image of a 2D trigonal lattice of macropores
in silicon with a lattice constant of 0.7 mm. As the pore
depth amounts to 100 mm the aspect ration is >100 (cour-
tesy of S. Schweizer).



such that propagation of light in the plane of periodicity with these frequencies is completely forbid-
den in the photonic crystal. To verify these theoretical calculations, transmission measurements
through bars of the macroporous silicon photonic crystals along G�M and G�K directions were
carried out. For this purpose bars containing 13 pore rows were cut out using a second lithographic
step. The measurements were performed using a Fourier transform infrared spectrometer (FTIR) in the
spectral range between 700 cm�1–7000 cm�1 (14.3 mm–1.43 mm). Figure 1 shows the measured spec-
tra for both directions and both polarizations. They are compared to transmission calculations using
the method developed by Sakoda [10]. The spectral positions of regions with vanishing transmission
correspond well to the calculated spectrum. For the measurements along the G�M direction they can
be attributed to the bandgaps already discussed in Fig. 2 for H-polarized and E-polarized light. How-
ever, the vanishing transmission in the range of 2200 cm�1–3500 cm�1 for propagation along the
G�K direction of E-polarized light can not entirely be explained through a stop band. A comparison
with the band structure of Fig. 2 predicts a photonic band which covers part of this spectral region.
However, bands in which the experimentally incident plane wave can not couple also lead to zero
transmission [11, 12]. These bands correspond to Bloch modes whose field distributions are antisym-
metric with respect to the plane spanned by the pore axis and the direction of incidence. Conse-
quently, although modes do exist in the photonic crystal they need not to be visible in transmission.
Care has therefore to be taken when directly comparing reflection or transmission measurements with
band structures: Although a bandgap leads always to total reflection/zero transmission, a spectral
region exhibiting total reflection/zero transmission does not necessarily coincide with a bandgap. A
direct comparison of experiment and theory is therefore rather based on reflection/transmission calcu-
lations than on band structure calculations alone. Beside the applied Sakoda method, mainly transfer
matrix and finite difference time domain (FDTD) methods have been used for the calculation of
reflection and transmission of macroporous silicon photonic crystals (Table 1).

The complete bandgap derived from band structure calculations comprises the interval between
2900–3300 cm�1 (3.44–3.03 mm). It clearly overlaps with all spectral regions with vanishing trans-
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Fig. 2 a) 2D band structure of a trigonal
macroporous silicon photonic crystal
ðr=a ¼ 0:45Þ. b) Density of photonic
states (DOS), inset: 2D hexagonal Bril-
louin-zone and appropriate oriented trigo-
nal pore lattice in real space. The grey bar
indicates the 2D complete bandgap. In this
spectral range neither H-polarized nor
E-polarized photonic states exist (DOS
¼ 0) (courtesy of K. Busch).

Table 1 Methods for the determination of the dispersion relation and the transmission/reflection of
photonic crystals used in this work.

method dispersion relation wðkÞ transmission IðwÞ ref.

Plane waves yes no [14]
Sakoda-plane waves no yes [10, 12]
Transfer-Matrix no yes [15]
FD-TD yes yes [16]



mission. The optimum bandgap can not be understood by Bragg scattering only. For scatterers
whose spatial dimensions are comparable to the wavelength, additional scattering resonances
(known as Mie resonances for spherical particles) appear. They depend on size and shape of the
scatterers. Consequently, apart from symmetry, lattice constant and refractive index, the radius of
the pores (r=a-ratio) has an influence on the existence, the position and the width of the photonic
bandgaps. A graphic representation of the relationship between gap frequencies and filling ratio is
known as a gap map, which for our structure, has been calculated before [13]. To verify this gap
map experimentally, transmission measurements for 17 different samples spanning a wide range of
r=a-ratios were carried out. The band edges were determined from these measurements and are
compared with the theoretical predictions in Fig. 4. The overall correspondence is very good. For
lower r=a-ratios only a bandgap for the H-polarization exists. A complete bandgap only appears
for r=a > 0.4 as then an E-bandgap appears which overlaps with the H-bandgap. With increasing
r=a-ratios the E-bandgap widens while the H-bandgap shrinks for very high filling ratios. A max-
imum complete bandgap of Dw=w = 16% for r=a = 0.48 can be deduced. This relatively large
complete bandgap is a consequence of the strong refractive index contrast between the silicon
(pore walls) and air (inside the pores) as well as the synergetic interplay of Mie resonance and
Bragg scattering resonance.
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Fig. 3 Transmission measurements (solid) and
calculation (dashed) for penetration of a 2D
macroporous silicon photonic crystal bar con-
taining 13 pore rows. Transmission for both po-
larizations (H-polarization and E-polarization)
along the 2 both high symmetry directions
G�M and G�K are shown [13].

Fig. 4 Position of the bandgaps for H-po-
larized light (dotted) and E-polarized light
(solid) for a 2D trigonal macroporous sili-
con photonic crystal depending on the r=a-
ratio (gap map). A complete bandgap ap-
pears as an overlap of the gaps for both
polarizations and attains its maximum size
for an r=a-ratio of 0.48 [13].



2.2 Finite photonic crystals

Strictly speaking, the band structure calculations can only be performed assuming an infinitely ex-
tended photonic crystal. Therefore also the bandgap (zero DOS) causing perfect total reflection only
appears for infinite bulk photonic crystals. For a very thin bar of the photonic crystal the incident light
of a frequency within the bulk bandgap is no longer totally reflected. A certain amount can penetrate
the thin photonic crystal. To investigate this effect 4 samples containing 1, 2, 3 and 4 crystal rows
with a r=a-ratio of 0.453 were fabricated (Fig. 5a). Transmission measurements for H-polarized light
of different wavelengths along G�K were performed (see Fig. 2) [17]. A tunable laser setup was
used which covered the spectral range between 3 < l < 5 mm corresponding to the range of the
H-bandgap (3.1 < l < 5.5 mm) of the corresponding bulk photonic crystal. The experimental results
were compared with transmission calculations applying the already mentioned Sakoda method with
4000 plane waves and revealed a very good agreement (Fig. 5b). Plotting the transmittance versus the
penetrated crystal thickness (Fig. 5c) an exponential decay is observed. This corresponds to the expec-
tation that for frequencies within the bandgap the light penetrating into the bulk photonic crystal is
exponentially damped. The slope of the line in the logarithmic plot corresponds to a decay constant of
10 dB per crystal row for light with a wavelength near the centre of the bandgap. Even for a bar
containing only 1 pore row the bandgap is already perceptible. This originates in the strong scattering
of the single pores due to the large refractive index contrast between air pores and silicon walls.

2.3 Birefringence

In the first years of investigations in photonic crystals mainly the photonic bandgap properties were
studied. However, over the last years attention was also drawn to the other spectral regions of the
dispersion relation that exhibit remarkable properties. For instance, the birefringence of a 2D macro-
porous silicon photonic crystal has been investigated in the spectral region below the first bandgap.
From theoretical investigations [18, 19], it has been expected that a triangular 2D photonic crystal
shows uniaxial properties for w ! 0. The optical axis coincides in this case with the pore/rod axis.
For light propagating in this direction the effective refractive index is independent of the polarization
direction (birefringence = 0). However for light propagating in the plane of periodicity the 2D band-
structure reveals different slopes of the E- and H-polarized bands due to different mode distributions
in the silicon matrix. This corresponds to different effective refractive indices for these 2 different
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Fig. 5 (online colour at:
www.interscience.wiley.com)
a) SEM image of the macroporous
silicon bars with varying width.
The inset shows an enlarged view
of the center square. b) Measured
and calculated transmission for
wavelengths within the H-band-
gap. Solid lines: calculations for
transmission through 1, 2, 3 and 4
crystal rows. Points: Measurements
for 0.89 � 0.04 (&), 1.8 � 0.1(*),
2.9 � 0.1 (~) and 4.2 � 0.2 (!)
crystal rows (determined statisti-
cally). c) Measured transmission as
a function of bar thickness for 2 wa-
velengths within the bandgap [17].



polarizations and leads to birefringent behavior of light propagation perpendicular to the pore axis.
This effect was experimentally investigated in transmission using an FTIR spectrometer. The sample
consisted of a macroporous silicon crystal with a lattice constant a = 1.5 mm and r=a-ratio of 0.429.
The transmission along G�M direction through a bar of 235 mm width containing 181 pore rows was
measured [20]. In front of the sample a polarizer was placed and aligned with an angle of 45� relative
to the pore axis. This defined a certain polarization state of the light incident on the photonic crystal
and assured that the radiation consisted of H- and E-polarized components of comparable strengths.
After penetration through the sample the beam passes through a second polarizer which was aligned
parallel or perpendicular to the first polarizer, respectively. The measured transmission for parallel and
crossed polarizers is shown in Fig. 6. A periodic variation of the transmitted intensity is observed for
both polarizer setups. The maxima of the parallel polarizer orientation correspond to the minima of
the crossed orientation. This can be explained considering the phase difference which builds up be-
tween E- and H-polarized light after penetration through the photonic crystal. This phase difference is
given by F ¼ 2p Dneff df=c (Dneff effective refractive index, d thickness of penetrated photonic crys-
tal, f light frequency). For parallel orientations of the polarizers a maximum occurs for DF ¼ 2mp
while a minimum appears for DF ¼ ð2mþ 1Þ p. For the crossed polarizers the opposite is true. The
light frequency and the order of the maxima and minima are determined from the transmission curve
and with this the birefringence Dneff can be calculated. It is frequency dependent (Fig. 6). However,
over the entire investigated spectral range its value exceeds 0.3 and attains its maximum at the upper
limit of the investigated range (at the lower band edge of the first E-gap). The largest birefringence
measured amounts to 0.366 at a frequency f ¼ 0:209c=a. With this it is by a factor of 43 larger than
the birefringence of quartz.

The uniaxial behavior of the triangular 2D photonic crystal in the limit w ! 0 corresponds to the
well known uniaxial birefringence of hexagonal atomic crystals in the visible. In atomic crystals the
scatterers (atoms) have distances in the region of �A and therefore Bragg-diffraction occurs for wave-
lengths in the X-ray region. For these classic atomic crystals the visible region of the spectrum corre-
sponds to the long wavelength limit w ! 0. In our case, where the lattice constant is of the order of
1 mm, Bragg diffraction occurs in the near and mid IR (causing the band gaps) while the limit w ! 0
comprises the long wavelength regions of the mid- and far-IR. In the described experiment only the
birefringence along one propagation direction in the plane of periodicity was investigated. For the
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Fig. 6 (left) Effect of birefringence: Measured transmission in the spectral range below the first band-
gap (long wavelength regime). Spectra were recorded for parallel (solid) and crossed (dashed) orienta-
tions of the two polarizers which were placed in front and behind the sample respectively. The periodic
maxima and minima in the transmission spectrum appear due to the phase difference between E- and
H-polarized waves accumulating during penetration of the sample [20]. (right) Spectral dependence of
birefringence ðDnÞ. Measurements (data points) and calculations (curves). The dashed curves repre-
sent the calculated dependence for the upper and lower bounds of the measured value of
r=a ð0:429� 0:002Þ. The largest measured birefringence ðDn ¼ 0:365Þ appears at the upper limit of the
investigated spectral range close to the band edge for E-polarization [20].



case of a uniaxial crystal this is sufficient, as the birefringence is constant for all propagation direc-
tions perpendicular to the optical axis. However for increasing light frequencies which approach the
first band gap this is no longer true. In this case the value of the birefringence depends on the direc-
tion of propagation in the G�M�K-plane and the optical properties of the crystal can no longer be
described by the terms “uniaxial” or “biaxial” known from classic crystal optics [21].

3 Defects in 2D macroporous silicon photonic crystals

3.1 Waveguides

Since the beginning of the study of photonic crystals special attention was paid to intentionally incor-
porated defects in these crystals. Point or line defects can be introduced into macroporous 2D-silicon
photonic crystals by omitting the growth of a single pore or a line of pores. This can be achieved by
designing a suitable mask for the lithography (the pattern defining process). To demonstrate waveguid-
ing through a linear defect, a 27 mm long line defect was incorporated along the G�K direction into a
triangular 2D photonic crystal with a r=a– ratio of 0.43 (r = 0.64 mm) [22]. However due to the
photo-electrochemical fabrication process the diameter of the pores in the adjacent rows to the wave-
guide is increased.

The transmission through the line defect was measured with a pulsed laser source which was tun-
able over the whole width of the H-stopband in G�K direction (3.1 < l < 5.5 mm). To couple light
into the narrow waveguide (with a subwavelength width) with reasonable efficiency, a spatially coher-
ent source of mid-IR light was used. A parametric source was used to produce a beam tunable from 3
to 6 mm, containing 200-fs pulses at a repetition rate of 250 kHz and a typical bandwidth of approxi-
mately 200 nm. The H-polarized beam was focused onto the sample by a 19-mm focal-length ZnSe
lens to a spot size of approximately 25 mm. Because the waveguide width was 1.1 mm, this spot size
provided a theoretical coupling efficiency of approximately 4.8%. The transmitted light was passed
through a monochromator, chopped, and detected with a pyroelectric detector and a lock-in amplifier.
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Fig. 7 (left) a) Measured and b) calculated H-polarized transmission spectrum of a 27 mm long wave-
guide directed along G�K covering the spectral range of the H-bandgap of the surrounding perfect
photonic crystal. The transmission is in %. Only the even waveguide modes contribute to the transmis-
sion as the incoming plane wave can not couple to the odd waveguide modes. The small stopgap at a
frequency of 0.45 c=a is caused by the anticrossing of 2 even waveguide modes [22]. (right) Computed
H-polarized band structure of the waveguide oriented along G�K. Solid and dotted curves correspond
to even and odd modes, respectively. The two bands which are labelled with arrows appear due to the
overetched pores on either side of the waveguide. The shaded areas correspond to the modes available
in the adjacent perfect crystal regions [22].



The transmission is defined as the ratio of the transmitted power to the total power incident upon the
sample and is about 2%. The transmission deficit compared to 4.8% is attributed to the clipping of the
beam by the substrate and diffraction as well as Fresnel losses.

The measured spectrum (Fig. 7) exhibits pronounced Fabry–Perot-resonances over a large spectral
range which are caused by multiple reflections at the waveguide facets. Comparing the spectrum with
an FDTD-transmission calculation reveals very good agreement and the comparable finesse of the
measured and calculated resonances indicate small losses inside the sample.

A band structure calculation for H-polarization along G�K including waveguide modes is depicted
in Fig. 7. Here, the 2D band structure has been projected onto the new 1D Brillouin zone in G�K
direction, since the line waveguide reduces the symmetry. The grey shaded regions represent all possi-
ble modes inside the perfect crystal areas adjacent to the line defect. Defect modes bound to the line
defect, therefore, occur only in the bandgap, i.e., in the range 0.27 < f < 0.46. They split into even
and odd modes with respect to the mirror plane which is spanned by the waveguide direction and the
direction of the pore axis. As the incoming wave can be approximated by a plane wave, the incident
radiation can only couple to the even modes of the waveguide. The odd modes do not contribute to
the transmission through the waveguide and, therefore, in this experiment transmission is solely con-
nected with the even modes. The small stop band between the even modes around a frequency of 0.45
is reproduced as a region of vanishing transmission in Fig. 7 due to anticrossing of the waveguide
modes [23]. Furthermore, from the band structure it can be concluded that for 0.37 < f < 0.41 c=a
only a single even mode exists. Its bandwidth amounts to 10%.

3.2 Microcavities

Besides line defects also point defects consisting only of 1 missing pore are of special interest. Such a
micro-resonator-type defect also causes photonic states whose spectral positions lie within the bandgap
of the surrounding perfect photonic crystal. The light fields belonging to these defect states are there-
fore confined to the very small volume of the point defect resulting in very high energy densities
inside the defect volume. As the point defect can be considered as a microcavity surrounded by
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Fig. 8 (online colour at: www.interscience.wiley.com) (left) Top view of the photonic crystal region
containing the waveguide-microresonator-waveguide structure. The r=a-ratio of the pores amounts to
0.433. The waveguides on the left and on the right serve to couple the light into the point defect
(microresonator) [24]. (right) Setup of the optical measurement. (courtesy from V. Sandoghdar).



perfect reflecting walls, resonance peaks with very high Q-values are expected in the transmission
spectra. Since the symmetry is broken in both high-symmetry direction, a band structure cannot be
used anymore to describe point defect. To study this experimentally, a sample was fabricated includ-
ing a point defect which was placed between 2 line defects serving as waveguides for coupling light
in and out [24]. Figure 8 shows an SEM-image of the described sample with r=a = 0.433.

Measuring transmission through this waveguide-microresonator-waveguide structure demands an op-
tical source with a very narrow linewidth. Therefore, a continuous wave optical parametric oscillator
(OPO) has been used which is tunable between 3.6 and 4 mm and delivers a laser beam of 100 kHz
line width. For spatially resolved detection an uncoated tapered fluoride glass fibre mounted to a
SNOM-head was applied and positioned precisely to the exit facet of the outcoupling photonic crystal
waveguide (Fig. 8). In the transmission spectrum 2 point defect resonances at 3.616 mm and 3.843 mm
could be observed (Fig. 9). Their spectral positions are in excellent agreement with the calculated
values of 3.625 mm and 3.834 mm predicted by 2D-FDTD calculations taking into account the slightly
widened pores surrounding the point defect. The measured point defect resonances exhibited Q values
of 640 and 190 respectively. The differences to the theoretical predicted values of 1700, 750 originate
from the finite depth not considered in 2D-calculations and the exact pore shape near the cavity.
Recent 3D-FDTD calculations show that for high Q-values, the finite depth as well as the shape of the
pores near the cavity play an important role in the determination of the Q-value [25]. Therefore, the
2D-limit breaks for high-Q cavities under realistic conditions. Intuitively, this can be explained as
follows. Any out-of-plane component of the incoming light will result in a spreading of the mode with
depth and to a reduction of the Q-value. However, the reported high Q-values of this 2D microresona-
tor might already be sufficient for studying the modification of radiation properties of an emitter
placed in such a point defect.

4 2D photonic crystals in the NIR

In the preceding paragraphs experiments were reported which demonstrate the properties of macropor-
ous silicon for 2D photonic crystals with bandgaps in the mid IR. Their high accuracy makes them a
perfect model system to explore the concept of photonic crystals in the IR. Beside their physically
interesting properties photonic crystals bear considerable potential for optical telecommunication (for
instance, application of line defects for routing of the light beams). For these applications the photonic
crystal waveguides have to work in a wavelength range between 1.3–1.5 mm so that they are compa-
tible to the existing glass fibre network. This fact requires photonic crystals with bandgaps in the
corresponding spectral range. As it is known from Maxwell’s equations the spectral position of the
bandgap scales linearly with the lattice constant of the photonic crystals. Therefore, structures with
sub-micrometer dimensions are necessary. Although they should not show a novel physical behavior,
their fabrication still is an experimental challenge. A triangular lattice was fabricated with a pitch
a = 0.7 mm and r=a�ratio of 0.365. To check the spectral position of the first order bandgap reflection
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Fig. 9 Measured monopole (Q = 647) and decapole reso-
nances (Q = 191) of the point defect at wavelengths 3.616 mm
and 3.843 mm [24].



measurements were performed using an IR microscope connected to an FTIR-spectrometer. The re-
flection for H- and E-polarized light incident in G�M direction was measured separately. A gold
mirror was used as a reference. Fig. 10 shows a comparison of the measured reflection spectra with
the band structure. The grey shaded spectral ranges represent the theoretically expected regions of
high reflectivity stemming from the bandgaps. They correspond very well to the experimental results.
Although the reflected light contained contributions from beams with an incidence angle of up to 30�

(due to the focussing conditions of the microscope) this off-normal incidence has only a negligible
effect. The incident light is bent by refraction towards the normal propagating with a much smaller
angular deviation inside the photonic crystal. Additionally, the width and position of this first order
bandgap is not very sensitive for small angular deviations [26]. Please note that the very steep band
edges reflect the very high quality of these structures which were obtained by a recently developed
improved etching method. Also reflectivities originating from higher order bandgaps, antisymmetic
modes or modes with a low group velocity can be observed and are in very good agreement with the
theory.

Together with the results of Schilling et al. and Rowson et al. who showed fundamental bandgaps at
1.3 mm [27] and 1.5 mm [28], resp., this experiment verifies that macroporous silicon structures can be
fabricated and used as 2D photonic crystals for the technologically interesting telecommunication
wavelengths between 1.3–1.5 mm. As was pointed out earlier the attenuation for light frequencies
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Fig. 10 (online colour at: www.interscience.wiley.com) Reflectivity along G�M for a 2D trigonal
macroporous silicon photonic crystal with a lattice constant of 0.7 mm for H-polarization (TE). Left:
Measured reflectivity of a semi-infinite photonic crystal. Right: Comparison with band structure. Sym-
metric bands contribute to transmission while for asymmetric bands the incident plane waves can not
couple. Beside the bandgaps they also cause total reflection. The dark shaded range shows the funda-
mental bandgap for H-Pol from 2 to 3.2 mm (courtesy from S. Richter).

Fig. 11 (online colour at: www.interscience.wiley.
com) Effect of a thin oxide coating of the pores
of an silicon photonic crystal. In grey, the transmis-
sion without the oxide coating is shown, in black
the transmission with an oxide coating is shown
[29].



within the band gap amounts to 10 dB per pore row. As Maxwell’s equations scale with the structure
size this relative property remains unchanged also for the downscaled structure. This enables a close
packing of waveguides, as the separation of 6–8 pore rows should be sufficient to avoid cross-talk
between neighboring waveguides.

In the last years, surface scattering is getting a more and more severe loss mechanism in III–V
semiconductor-based photonic crystals. Silicon has in this sense a unique advantage. Scattering is
supposed to originate form surface roughness inside the pores. High-dielectric nano-roughness acts as
Mie-scatterer for the light. However, high dielectric scatters inside the pores of a silicon photonic
crystal can easily be converted to low dielectric scatterers by thermal oxidation. In Fig. 11, the differ-
ence between an as-etched and an oxidized photonic crystal is shown for an extreme case. As-etched
macroporous silicon shows in transmission almost no signal in the air band region. After a thin 10 nm
oxide has been thermally grown, not only the transmission in the air band increases dramatically, it
also enables Fabry–Perot-Resonances showing the very low losses [29].

5 Tunability of photonic bandgaps

5.1 Liquid crystals tuning

Small deviations of the fabricated experimental structures from designed ones have serious influence
on their optical properties. In particular, the design of a microresonator (point defect) with a well
defined resonance frequency in the near IR allows only fabrication tolerances in the sub-nanometer
regime, a demand which currently can not be fulfilled reproducibly. Additionally, for many applica-
tions e.g. optical switches one would like to shift the band gap during operation. Therefore, tuning the
optical properties during operation is a major point of interest. One way to achieve this behavior, is to
change the refractive index of at least one material inside the photonic crystal. This can be obtained
by controlling the orientation of the optical anisotropy of one material incorporated in the photonic
crystal [30]. As proof of principle of the latter, a liquid crystal (E7 from EM Industries Inc.) was
infiltrated into a 2D triangular pore array with a pitch of 1.58 mm and the shift of a band edge
depending on the temperature was observed [31]. The liquid crystal E7 is in its nematic phase at room
temperature but becomes isotropic at T > 59 �C. The refractive index for light polarized along the
director axis is ne = 1.69 while it is only n0 = 1.49 for perpendicular polarization exhibiting a strong
anisotropy.

Transmission for H-polarized light was measured along the G�K direction through a 200 mm thick
bar of the infiltrated photonic crystal. In the case of room temperature the first stop band of the H-
polarization is observable in the range between 4.4–6 mm. Although a large bandgap for the H-polar-
ization still exists, the complete band gap, which is characteristic for the unfilled structure, is lost due
to the lowered refractive index contrast within the infiltrated crystal. Therefore the investigations were
only carried out for H-polarization. When the structure is heated up, the upper band edge at 4.4 mm is
red shifted while the lower band edge exhibits no noticeable shift. At a temperature of 62 �C the red
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Fig. 12 Temperature dependence of the band edge shift
caused by temperature induced phase transition of the infil-
trated liquid crystal. Solid line: Fit to experimental data
points, Dashed line: Calculation assuming a simple axial
alignment of the liquid crystal in the pores [31].



shift saturates and the total shift amounts to Dl = 70 nm as shown in Fig. 12. This corresponds to 3%
of the band gap width. The shift is caused by the change in orientation of the liquid crystal molecules
inside the pores. In a simplified model one can assume that all liquid crystal molecule directors line
up parallel to the pore axis when the liquid crystal is in its nematic phase at room temperature. Then
the H-polarized light (E-field in plane) sees the lower refractive index n0 inside the pores. If the
temperature is increased above 59 �C a phase transition occurs and the liquid crystal molecule direc-
tors are randomly oriented. The H-polarized light sees now a refractive index inside the pores which
is an average over all these orientations. According to this model a red shift of Dl = 113 nm is
expected which is slightly larger than the measured one. The difference in the observed and calculated
shift is currently under investigation. Although the shifting or switching of a band gap via temperature
is not very practical for a device, the present study confirms the possible tunability of photonic band
gaps using liquid crystals.

5.2 Free-carrier tuning

Recently, ultrafast tuning of the band edge of a 2D macroporous silicon photonic crystal near 1.9 mm
was shown [32]. In contrast to LQ switching, here the refractive index of the silicon matrix was
tuned by optical injection of free carriers. The photonic crystal was illuminated by a laser pulse
at l = 800 nm, so well in the absorption region of silicon, with a pulse duration of 300 fs. The rise
time of the change in the refractive index and thus the shift of the band edge was about 400 fs,
slightly slower than the pulse due to the thermalization of the excited carrier (Fig. 13). The band edge
shift observed goes linearly with the pulse intensity as expected from Drude theory. For example, for
a pump fluence of 2 mJ cm�2, a band shift of 29 nm was observable. This is the fastest switching of
a 2D photonic crystal to date.

6 3D photonic crystals on the basis of macroporous silicon

Thus far, the main work based on macroporous silicon and photonic crystals concerned 2D photonic
crystals. However, recently attempts have been undertaken to use macroporous silicon for 3D photonic
crystals. One approach to introduce a refractive index variation in the third dimension is the modula-
tion of the pore diameter with pore depth [33]. As described in the first paragraph of this review, the
pore diameter of the macropores can be controlled during the fabrication process (photo-electrochemi-
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Fig. 13 (A) Band edge shifts as a function of the pump fluence, i.e., the plasma density. A maximum
shift of 29 nm at 1.9 mm has been observed in good agreement with numerical calculations. (B) Tran-
sient behavior of differential reflectivity at l = 1900 nm for a pump beam at l = 800 nm and a fluence
of 1.3 mJ /cm2. The band edge shift within 400 fs with a dynamic of 25 dB [32].



cal etch process) by the intensity of the back side illumination of the wafer. Strong illumination leads
to high etching currents and, therefore, wide pores while the opposite is valid for low illumination.

The illumination intensity was now varied periodically during the etch process applying a zig-zag
profile. Fig. 14 shows an SEM-image of a longitudinal section of the sample. The pore diameter
modulation can be well approximated by a sinusoidal dependence on the pore depth. The modulation
period amounts to 1.69 mm and the porosity varies between 81% and 49% between the planes of wide
and narrow pore diameters. The lattice constant a of the 2D pore pattern is again 1.5 mm. The result-
ing 3D photonic crystal has a hexagonal lattice and the corresponding Brillouin zone has hexagonal
shape too. Note, that this is the first three-dimensional photonic crystal in the infrared region which
perfectly extends over more than 10 lattice periods. To investigate the optical properties of the struc-
ture introduced by the pore diameter modulation, reflection measurements were performed along the
pore axis which correspond to the G�A direction. The spectrum is shown in Fig. 14 and compared to
a 3D band structure calculation using the plane wave method. For comparison with the experiment,
the most left part of the band structure shows the relevant dispersion relation along G�A. The stop
gap in this direction caused by the periodic pore diameter modulation is indicated by a grey bar. It
coincides well with the range of zero-transmission between 1350 cm�1 (l ¼ 7:41 mm) and 1680 cm�1

(l ¼ 5:95 mm) measured along the pores.
Although the structure does not show a complete 3D bandgap it has another distinct property: As it

is not based on building blocks of a fixed shape (e.g. spheres or ellipsoids) the periodicity can be
different for all directions. The modulation period along the pore axis (z-axis) can be independently
controlled from the periodicity in the x–y-plane. Consequently, the dispersion relation along the pores
can be adjusted nearly independently from the dispersion relation perpendicular to them. It turned out
recently that the same structure but with an initial 2D cubic lattice does have a complete photonic
bandgap. The resulting structure is a inverted simple cubic lattice with a complete bandgap of around
4% for realistic etching parameters [34].

Another approach to fabricate 3D photonic crystals on the basis of macroporous silicon includes a
2-step-process [35]. In the first step a conventional 2D array of straight pores is photo-electrochemi-
cally etched. Afterwards additional pores are drilled under oblique angles from the top using a fo-
cused ion beam (FIB). In this way a set of 3 different pore directions is established which cross each
other in the depth. The fabricated structure is very similar to the well-known Yablonovite-structure for
the microwave region. However a complete 3D-bandgap could not yet be shown experimentally as the
angles between the 3 different pore sets have not been properly aligned. Another fabrication technique
which should give a very similar result uses the photo-electrochemical etching of macropores on a
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Fig. 14 (left) SEM-image showing a longitudinal section of the modulated pore structure. The varia-
tion of the pore diameter with depth can be modelled by a sinusoidal modulation
r ¼ r0 þ Dr sin ð2pz=lzÞ with r0 ¼ 0:63 mm, Dr ¼ 0:08 mm and lz ¼ 1:69 mm [33]. (right) Transmission
measured in G�A direction (along the pore axis) and comparison with calculated 3D band structure.
The grey bar indicates the stopgap for light propagation in this direction causing transmission [33].



(111)Si surface [36]. In contrast to the pore growth on a (100)Si surface in the case of a (111)Si
surface the pores grow into h113i-directions. As there are three equivalent h113i directions available
from the (111) surface, 3 pores start to grow from each nucleation point at the surface. Band-structure
calculations for a corresponding structure show that the pores along the three h113i directions grow at
suitable angles such that the structure should exhibit a 3D complete photonic bandgap of about 7%.
Very recently, different crystal structures with complete bandgaps larger than 20% based on macropor-
ous silicon have been predicted and are under current investigation [37].

7 Summary

In summary we have reviewed that macroporous silicon is a suitable material to fabricate ideal 2D
photonic crystals for the IR. Due to the high refractive index contrast between silicon and air the
bandgaps are large and for a triangular array of pores a complete bandgap for the light propagating in
the plane of periodicity appears. Experimental investigations of such a structure for different porosities
(r/a-values) confirms the calculated gap map and the maximum width of the complete bandgap of
16% for r=a = 0.475. The wide bandgap of the H-polarization causes a strong attenuation for light
with frequencies within the gap. The corresponding field is exponentially damped and a damping
constant of 10 dB per pore row could be experimentally determined. Beside the bandgaps also the
long wavelength regime below the first bandgap has been investigated. Large birefringence was experi-
mentally and theoretically studied and a maximum value of Dneff ¼ 0:366 (difference between H- and
E-polarization) was obtained which is by a factor of 43 larger than the birefringence of quartz. Due to
the photolithographic prestructuring of the macroporous silicon, defects could intentionally be intro-
duced. The transmission through a straight waveguide has been investigated. After comparison of the
experimental features with band structure calculations a single mode transmission in a spectral range
with a bandwidth of 10% could be identified. Additionally, transmission measurements at a point
defect have been performed. Two resonances with Q-values of 647 and 191 were found and compar-
ison with theory reveals that they can be attributed to the monopol and decapol mode of the micro-
resonator. To obtain bandgaps in the technologically interesting near infrared spectral region macropor-
ous silicon 2D photonic crystals with structure sizes as small as a = 0.5 mm have been fabricated.
They exhibit bandgaps in the optical telecommunication window around l = 1.3 mm which was con-
firmed by reflection measurements. Another issue, closely related to applications, is the tunability of
photonic bandgaps. A red shift of an upper band edge by 70 nm was demonstrated based on the
refractive index change due to the reorientation of liquid crystals infiltrated into the pores. The reor-
ientation was initiated by temperature change and corresponds to the phase transition nematic !
isotropic of the liquid crystal. Moreover, for the first time the ultrafast switching (400 fs) of the band
edge was shown by optically injected free carriers. This speed is compatible with packet switching in
telecommunication technology. Finally perfect, extended 3D photonic crystals based on macroporous
silicon were presented. Transmission measurements on these 3D photonic crystals with modulated
pores showed good agreement with full 3D band structure calculations. Although these photonic crys-
tals do not exhibit a complete 3D bandgap the dispersion relation along the pores can almost indepen-
dently be tuned compared to the dispersion relation perpendicular to it. In particular, one can imagine
to utilize the mode structure of these or similar 3D photonic crystals based on macroporous silicon
photonic crystals to realize novel atom traps. All these experiments show that macroporous silicon is
an ideal material to study the properties of photonic crystals in the infrared regime as well as for
possible technological applications operating in this spectral range.
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