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Abstract

Zero field states of the magnetization in a uniaxial ferromagnetic sample of cubic shape are calculated by means of

micromagnetic finite element modeling. With increasing size the minimum energy arrangement changes from a single-

domain configuration (flower state) to a vortex configuration. An intermediate arrangement (twisted flower state)

between the flower state and the vortex state is observed. A further magnetization state resulting in the calculation is a

vortex state with a singularity of the directional field of the magnetization.

This work provides our solution to the micromagnetic Standard Problem No. 3 posed by the mMAG micromagnetic
modeling activity group at the National Institute of Standards and Technology (NIST). r 2002 Elsevier Science B.V.

All rights reserved.
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1. Introduction

The magnetic states of a ferromagnetic sample
are characterized by the minima of the Gibbs free
energy. Within the framework of micromagnetism,
the directional field of the magnetization in the
sample arranges such as to minimize the sum of
the most relevant energy terms. Usually, the most
significant contributions to the total energy of
ferromagnetic materials are the magneto-crystal-

line anisotropy energy, the exchange energy, the
Zeeman energy and the stray field energy. In this
paper we only consider zero field magnetic states
so that the Zeeman energy term is omitted. If the
material’s parameters and the shape of the sample
are given, the minimum energy arrangement
depends only on the size of the sample. This size
dependence of the magnetic ground state is
addressed in mMAG Standard Problem No. 3
which is treated in this paper.
Micromagnetic standard problems have been set

up by the mMAG group at NIST in order to obtain
reliable tests of numerical algorithms. Provided
that independent groups report corresponding
results for well-defined problems, these standard
problems can be used as checks for possible errors
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in a numerical code. The first standard problem
did not lead to satisfactory results in this sense [1].
No clear consensus can be derived from the seven
anonymous submissions from different groups. A
detailed discussion for the possible reasons for the
discrepancies in the results of Standard Problem
No. 1 is difficult to give on the basis of the
available data, but in general it can be said that the
first standard problem represents a too complex
problem for the current state of numerical micro-
magnetic computations. Therefore, two further
standard problems have been defined, bearing the
difficulties of Standard Problem No. 1 in mind.
One of these more recent standard problems is

mMAG Standard Problem No. 3. The problem
specification is illustrated in Fig. 1. As only zero
field states of the magnetization are considered,
problems concerning switching or nucleation
processes and the influence of field rates are
avoided. Hence, the problem is comparatively
simple. Moreover, the size of the sample is small
enough to rule out discretization errors.
The task of the mMAG Standard Problem No. 3

[2] consists in calculating the single-domain limit
(SDL) for a ferromagnetic cube with uniaxial
anisotropy. The SDL is defined here as the critical
edge length at which a mostly uniform arrange-
ment of the magnetization, the so-called flower
state, and the vortex state, i.e. a strongly non-
uniform configuration, are of equal energy.

Using reduced units, there is no need to
explicitly define the material’s parameters, i.e. the
spontaneous polarization Js; the magneto-crystal-
line anisotropy constant K and the exchange
constant A: For this purpose the anisotropy
parameter Q ¼ K=Kd is defined with the stray
field constant Kd ¼ J2s =ð2m0Þ: The size L of the
cube is given in units of the exchange length ls ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0A=J2s

p
and energies are expressed in reduced

units, i.e. in units of KdV with V ¼ L3:

2. Micromagnetic algorithm

The magnetic structures and energies are calcu-
lated by means of numerical micromagnetic
simulations with finite elements. The program is
based on direct minimization of the total energy.
In the following sections the basics of the
algorithm are presented. More details about the
code can be found elsewhere [3].

2.1. Discretization

We use five different meshes of tetrahedral finite
elements to discretize the computational region
(CR). The number of elements ranges from 35 822
in the case of the coarsest mesh to 100 283 elements
in the mesh with the highest discretization density.
To generate the grid, the CR is first subdivided
into few tetrahedral elements using a Delaunay
algorithm. Once a coarse mesh is defined, the
elements are repeatedly bisected along their long-
est edge. This procedure generates finite elements
with nearly uniform edge length and allows one to
control both the total number of elements and the
discretization density in selected areas of the CR to
a certain extent. A minimum edge length lmin is
defined as a stopping criterion for the bisectioning
of elements. This minimum length is required for
the edge of an element in order to be refined. The
five meshes with different discretization density are
generated by starting from one coarse mesh and
applying the longest-edge-bisection method with
different values of lmin: The smaller lmin is, the
more elements are created. For details on this
bisection method see Ref. [4].

Fig. 1. Problem specification as first proposed by A. Hubert.

The anisotropy parameter is chosen to be Q ¼ 0:1:
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The meshes with different discretization density
are used to extrapolate the computed values, e.g.
of the total energy, to the case of infinite
discretization density. By doing so, errors resulting
from the discrete representation of the vector fields
involved in the calculation can be minimized. An
example of this will be given in Section 4.2.

2.2. Energy terms

The equilibrium arrangement of the magnetic
structure minimizes the Gibbs’ free energy. Ne-
glecting entropy, the problem is treated by
minimizing the sum of the most important
contributions to the total energy.

2.2.1. Exchange energy

The continuum representation of the exchange
energy Eexc of a ferromagnet is given by

Eexc ¼
Z

A � ð=mxÞ
2 þ ð=myÞ

2 þ ð=mzÞ
2

� �
dV ; ð1Þ

where A is the exchange constant and m ¼
ðmx;my;mzÞ

T is the unit vector of the local
magnetization. In our code, the exchange energy
for a given discretized distribution of magnetic
moments is calculated by means of linear inter-
polation of the Cartesian components of the
magnetization within each finite element. Hence,
the exchange energy density is approximated as a
piecewise constant function.

2.2.2. Magnetocrystalline anisotropy

The magnetocrystalline anisotropy energy in the
case of uniaxial anisotropy writes

Ean ¼
Z

K sin2a dV ; ð2Þ

where a is the angle between the local magnetiza-
tion and the easy axis. To calculate this term, the
exchange energy density of the anisotropy is
determined at the nodes (discretization points)
and interpolated linearly within each element.

2.2.3. Stray field energy

The non-local nature of the stray field term
causes difficulties in micromagnetic calculations.
To reduce the numerical costs, the stray field and
the stray field energy are not calculated directly.

Instead, a variational approach is used which
contains only local variables. The method is based
on one of the two inequalities set up by Brown [5],
who has shown that the stray field energy Est and
the induction B of a given distribution of magnetic
moments J can be obtained by minimizing the
functional on the right-hand side of the following
equation with respect to B0:

Est ¼ minB0
1

2m0

Z
ðall spaceÞ

ðB0 � JÞ2 dV

� �
; ð3Þ

with the constraint = � B0 ¼ 0: Provided that B0 is a
solenoidal field, this term is minimized if and only
if B0 is equal to B in all space. Representing B0 as
the curl of a vector potential A; the constraint of
solenoidality is fulfilled automatically. In a numer-
ical implementation, the term on the right-hand
side of Eq. (3) can be calculated by means of an
unconstrained minimization with respect to the set
of Cartesian components of the discretized vector
field A defined at the nodes.
The advantages of using this functional to

calculate the stray field energy Est are remarkable:

(1) Only local quantities are involved in the
calculation of the stray field. The evaluation
of a twofold integral is avoided.

(2) The minimization of functional (3) can be
performed quickly. As the problem is convex,
the functional behaves well and no problem
concerning saddle-points needs to be consid-
ered.

(3) The memory requirements are low compared
with other methods. No dense matrix is needed
as is the case when boundary element methods
are used [6,7].

(4) In this micromagnetic algorithm the dynamics
of the magnetization is not considered. The
magnetic structure is determined by direct
minimization of the energy with respect to the
direction of the magnetization at each node.
This gives the possibility to calculate both the
stray field and the minimum energy arrange-
ment of the magnetization simultaneously [8].
By adding functional (3) to the exchange
energy term and to the term of the mag-
netocrystalline anisotropy, the equilibrium
arrangement of the magnetization can be
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calculated by minimizing the resulting energy
with respect to both the direction of the
polarization and to the vector potential. This
speeds up the calculation considerably as
compared with an iterative calculation of the
magnetic structure on one hand and the stray
field on the other.

This method hasFof courseFsome disadvan-
tages, too. The drawback in this case is that the
integral in Eq. (3) is extended over all space,
including the non-magnetic area outside the
sample. As numerical calculations with the finite
element method necessarily consider only finite
domains, some effort is needed to treat this open
boundary problem where the integration is ex-
tended to infinity. Several techniques have been
developed and successfully applied for such
problems [7]. In our code the whole area outside

the sample is mapped on a finite region by means
of a bijective transformation. The ‘‘parallelepipe-
dic shell transformation’’ [9] is applied. The sample
is embedded between six non-magnetic segments
as shown by Fig. 2. Each point inside these
segments represents one point of the area outside
the sample. The six segments are discretized into
finite elements and are part of the CR.
By including the non-magnetic segments, the

number of degrees of freedom is raised because the
vector potential needs to be calculated in the
surrounding segments, too. The previously men-
tioned benefits of this method, however, justify
this additional numerical effort. The method
presented here is based on an algorithm developed
by Schrefl et al. [10]
The advantages of using finite elements in

micromagnetism instead of finite differences are
the capability to treat complex geometric

Fig. 2. Exploded view of the different domains considered in the CR. The unbounded area outside the ferromagnetic sample (cube in

the middle) is mapped onto six finite domains surrounding the sample.
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structures and to adaptively refine the discretiza-
tion mesh in the case of large samples subdivided
in domains. These advantages do not apply to
Standard Problem No. 3, which is tailored to the
finite difference method.

2.3. Energy minimization

As mentioned above, the energy is minimized
directly, without taking into account the dynamics
of the magnetization. The minimization of the
total energy has to be performed under the
constraint Jj j ¼ const: This constraint can be
enforced easily by representing the local polariza-
tion J i at each node i with spherical coordinates:

J i ¼ J

sin Wi cos ji

sin Wi sin ji

cos Wi

0
B@

1
CA: ð4Þ

For a given initial configuration of J and random
initial values for A; term (3) is calculated first by
minimization with respect to the discretized vector
potential. After this, the sum of all energy terms is
minimized with respect to the set of variables
fWi; ji; ðAxÞi; ðAyÞi; ðAzÞig defined at the nodes i:
The minimization is performed with the conjugate
gradient method [11], which has been proved to be
very efficient in micromagnetic calculations [12].
Commercial minimization routines work very

reliably. They can be tested with simplified models
whose solutions are known. For instance, one may
check whether an alignment of the magnetization
parallel to an easy axis results if the stray field
energy is switched off and a random initial
configuration of the magnetization is chosen.
In the calculations presented here we use a

stopping criterion (optimality tolerance para-
meter) of 10�12; which is comparable to the
machine’s precision (C10�16). This parameter is
unnecessarily low [13]. It can be increased by five
orders of magnitude without any relevant change
of the result, i.e. in the first six significant digits of
the calculated energy. This extremely low tolerance
has been chosen to make sure that the stopping
criterion does not have an influence on the result.
The longer computation time resulting from this is
not relevant for the calculation of the zero field

states of the magnetization as the algorithm
converges quickly.

3. Tests of the algorithm

Besides possible tests of the minimization
routine as described above, the calculation of the
single energy terms can be tested easily. The
anisotropy term and the Zeeman term generally
do not cause any problem and they can be tested
by calculating these energy terms for a homo-
geneous magnetization which is tilted with respect
to the easy axis or the external field. The stray field
energy and the exchange energy require more
subtle tests.

3.1. Stray field

As an example, the stray field and the stray field
energy can be calculated for the case of a
homogeneously magnetized cube. This is a suitable
test to determine the discretization density re-
quired in the exterior region.
In Fig. 3, the field of the magnetic induction

calculated for a homogeneously magnetized cube
is displayed on a cross-section through the middle
of the cube (x ¼ 0). The transformation of the
exterior region into the surrounding shell has been
inverted for the visualization of the vector field so
that the arrows outside the cube represent the
induction in real space. It can be seen qualitatively
that the boundary conditions (continuity of the
normal component, jump condition of the tangen-
tial component) are fulfilled automatically.
The accuracy of the calculation of the stray field

energy depends on the discretization density in the
non-magnetic region outside the sample. As shown
in Fig. 4, a good agreement with the analytical
value is obtained quickly with increasing number
of elements in the surrounding shell. According to
this test of convergence, about 2� 104 elements in
the exterior region are used in the calculation of
the magnetic structures. The five meshes used for
the extrapolation of the data to the case of infinite
discretization density differ only by the number of
elements located in the interior magnetic region.
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3.2. Exchange energy

The correctness of the calculation of the
exchange energy term can be verified using a
well-defined inhomogeneous arrangement of the

magnetization whose exchange energy can be
calculated analytically. For this purpose, a simpli-
fied form of a 1801 wall is used as described in
Fig. 5.
This magnetic structure yields a homogeneous

exchange energy density and the analytic value of
the total exchange energy is Eidealexc ¼ Ap2L: The
ratio of the numerically obtained value to this
analytical value as a function of the number of
elements is shown in Fig. 6.
The exchange energy is systematically under-

estimated, as is expected due to the interpolation
method. This effect is inherent in every discretiza-
tion scheme. The finite element method allows for
a precise approximation of the magnetic structure
by means of a piecewise linear field, in contrast to
the commonly applied methods which use piece-
wise homogeneous fields. The analytical value is
approached very well with increasing discretiza-
tion density. A global error significantly below 1%
is obtained.
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Fig. 4. Stray field energy in units of the analytical value E0 ¼
Kd � V=3 as a function of the number of elements in the exterior
region.

Fig. 3. Magnetic induction inside and outside the homogeneously magnetized cube. The big arrow indicates the direction of the

magnetization. The location and the number of arrows is not related with the discretization points.
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4. Details of the calculation

4.1. Initial conditions

Numerically as well as physically, it is not
expected to find a ferromagnetic sample in the
energetic ground state. There are generally several
metastable structures at zero field. Which of these
structures is realized depends only on the magnetic
history of the sample. Therefore, it does not make
much sense from a physical point of view to
pinpoint the energetic ground state of the magne-
tization.
From a numerical point of view, however, it is

important to have well-defined magnetization
states if numerical results are to be compared. In
this sense, the energetic ground state is a natural
choice. To account for different possible magnetic

histories, according to Fig. 7 two different initial
configurations have been chosen in the calculation.
The flower state is obtained by starting with a
homogeneous magnetization parallel to the easy
axis and the vortex state is calculated by starting
with two antiparallel domains oriented in the easy
axis direction.
These simple configurations are chosen to find

homogeneous and inhomogeneous arrangements
without prescribing the expected structures. In
some cases, a breaking of symmetry may lead to
energetically favored structures [3]. To facilitate
this, the initial configurations are slightly per-
turbed prior to the energy minimization. The
direction of the magnetization at each node is
randomly perturbed with a magnitude of 711: As
will be shown below, this procedure is very
important to find different remanent states.

4.2. Data extrapolation

The numerical values of the energy and the
remanence of a magnetic structure obtained using
a mesh of finite elements are always subjected to
discretization errors. If analytical results are not
available, it is difficult to state the quantitative
effect of these errors. To determine results which
are independent of the discretization, the calcula-
tions are performed with different meshes and the
data are extrapolated to the case of infinite
discretization density. An example for this is
shown in Fig. 8. When plotted over N�1; an
almost linear dependence is found for the energy
terms and for the remanence (N is the total

Fig. 6. Calculated exchange energy in units of the analytical

(exact) value vs. number of finite elements used.

Fig. 7. Initial conditions of the calculation. The system is

relaxed to an energetic minimum starting from both a

homogeneous arrangement and a configuration subdivided into

two domains.

Fig. 5. Inhomogeneous arrangement used to test the calcula-

tion of the exchange energy.
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number of elements). By means of a least-square
fit, a second-order polynomial function is deter-
mined with which one can extrapolate the results
convincingly to infinite discretization density, i.e.
N�1-0:
This extrapolation procedure may seem ques-

tionable because the continuum description of
micromagnetism is not valid on length scales
significantly below the exchange length. Hence,
when the cell size is very small, an atomistic
treatment is required to describe the magnetic
structure in the area enclosed by the element.
However, it should be kept in mind that the
discretization merely determines the quality of the
numerical representation of the continuum ap-
proximation. As we are only interested in a
micromagnetic description, there is no inconsis-
tency in extrapolating to infinitely small cell sizes.

5. Results

5.1. Flower state

When starting from the homogeneous arrange-
ment at small edge lengths, the expected Flower
state results as shown in Fig. 9. This magnetic
structure is mostly homogeneous. Only in the
vicinity of the edges and corners the magnetization
spreads outside due to the inhomogeneity of the
stray field. The magnetization tends to align

parallel to the local induction which is similarly
tilted near the edges, see Fig. 3. This tilting has
been found by Schabes and Bertram [14] and has
been studied, e.g., by Schmidts and Kronm .uller
[15], by Rave et al. [16] and by Usov and Peschany
[17].
According to the problem specification, the size

dependence of the energy of this structure has to
be determined and compared with the vortex state,
which will be discussed in Section 5.3.

5.2. Twisted flower state

Increasing the size of the sample, the flower state
becomes energetically unstable. A spontaneous
collapse is observed at an edge length of about
LC8:6 � ls: At sizes above this edge length, a
different magnetic structure results which we have
named twisted flower state. As a characteristic
effect, the remanence in the easy axis direction
Fwhen plotted as a function of the edge
lengthFis suddenly reduced once the ordinary
flower state converts into the twisted flower state,
see Fig. 10. The magnetic structure of the twisted

Fig. 8. Total energy of the vortex state at L ¼ 8:5 � ls obtained

using different discretization densities. The values are extra-

polated to the case N-N:

Fig. 9. Three-dimensional representation of the flower state.

The magnetization is mainly homogeneous and oriented

parallel to the easy axis.

R. Hertel, H. Kronm .uller / Journal of Magnetism and Magnetic Materials 238 (2002) 185–199192



flower state is shown in Fig. 11. Similar to the
flower state, the homogeneity of the arrangement
is mostly preserved. The qualitative difference to
the flower state is a twist of the magnetization
along the easy axis. This can be readily seen in the
cross-sections of this arrangement shown in
Fig. 12. In an interesting fashion, this arrangement

endorses the tendency to maintain a homogeneous
state parallel to the easy axis on one hand and to
reduce the stray field energy on the other by
forming a structure similar to a vortex.
Several names could be found to describe this

structure. The similarity to the magnetization
reversal mode of infinitely extended cylinders
known as curling would justify the name ‘‘curled
state’’ [18,19]. The twisted flower state has been
reported first by Schabes and Bertram [14], who
called this structure a ‘‘vortex state’’. Indeed, if the
size of the cube is further increased, the twisted
flower state modifies continuously such as to form
a longitudinal vortex state, i.e. a vortex structure
with its axis parallel to the easy axis. As there are
no closed flux lines inside the sample at the edge
lengths considered here, we have dismissed this
term. The term twisted flower state has been
chosen as we interpret this structure with its high
remanence to be a modified version of the flower
state described previously.
To calculate the twisted flower state, no special

starting conditions need to be chosen. The
structure may develop automatically by simply
using a homogeneous initial configuration. How-
ever, since the symmetry needs to be broken, the
previously mentioned small random perturbation
of the starting configuration is essential for
obtaining the twisted flower state. Correspond-
ingly, the edge length at which the flower state
collapses shown in Fig. 10 is not a critical edge
length at which the transition occurs but simply a
size at which the stability of the flower state is
reduced sufficiently for random perturbations to
lead to a different structure. The edge length at
which the flower state collapses depends on the
magnitude of the perturbations. Therefore, the size
dependence of the energy of the twisted flower
state is studied by reducing the size of the cube
after the flower state has collapsed.
The results indicate that, for Q ¼ 0:1; if both

structures are possible, the twisted flower state has
a lower energy than the flower state. However, the
twisted flower state is not found in very small
cubes. The characteristic twist hardly develops in
smaller cubes, so that in very small cubes a
distinction between these homogeneous states
becomes needless since the twisted flower state

Fig. 10. Collapse of the flower state with increasing size. The

sudden change of the remanence in the easy axis direction mz

indicates the conversion of the flower states into the twisted

flower state.

Fig. 11. Magnetic structure of the twisted flower state.
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converts into the ‘‘ordinary’’ flower state. There
seems to be a second-order phase transition
between the flower state and the twisted flower
state at an edge length of about 8:0 � ls which we
have not investigated in detail.

5.3. Vortex state

The magnetic structure of the vortex state is
shown in Fig. 13 and on the cross-sections in
Fig. 14. A small x-dependence of the magnetic
structure is observed. The magnetization on the
front side (x ¼ L=2) and on the back side
(x ¼ �L=2) differs from the magnetic structure
in the middle (x ¼ 0). Similar to the twisted flower
state (see Fig. 12, z ¼ 7L=2), the vortex on the
front side has a radial component directed outside
the sample while on the back side a small radial
component can be seen which is directed towards
the core of the vortex. In the middle plane x ¼ 0
the vortex is symmetric but elongated in the easy
axis direction. In another cross-section through
the middle of the sample (z ¼ 0) shown on the
lower right of Fig. 14 the Bloch line can be seen

clearly. On the vortex axis, i.e. the x-axis, the
magnetization is perpendicular to the vortex plane.

5.4. Vortex state with singularity

A topologically interesting modification of the
vortex state has been found which contains a
micromagnetic singularity. This type of singularity
is sometimes called Feldtkeller singularity [20] or
Bloch point [21]. Cross-sections through the
sample at x ¼ 0; y ¼ 0 and z ¼ 0 for this structure
are shown in Fig. 15.
The gray scaling in Fig. 15 represents the z-

component of the magnetization on the cut at x ¼
0 and the x-component on the other two cuts.
The main difference between this type of vortex

structure and the ordinary vortex structure can be
seen in the Bloch line which is interrupted by the
singularity. Following the Bloch line on the x-axis,
the magnetization changes its direction at one
point in the middle of the sample. On the surfaces,
the magnetization in the middle of the vortex is
oriented outside the sample on both sides while in
the case of the ordinary vortex state it is directed

Fig. 12. Twisted flower state, projection of the magnetization on different planes. The twist of the magnetization is clearly recognizable

when looking on a plane with z ¼ const:
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inside the sample on one side and outside the
sample on the opposite side. The vortex structure
with singularity is completely demagnetized, i.e.
the remanence vanishes in every direction.
In the close vicinity of the singularity any

direction of the magnetization can be found.
Hence, the ferromagnetic order of the material
breaks down at this point and the magnetization
changes its direction by 1801 on an atomistic level.
No direction of the magnetization can be defined
at the singularity.
While the existence of such singularities is well

known and the magnetic structure near these
points has been studied in detail by means of
analytic approaches [22,23], micromagnetic simu-
lations on these structures have not been found in
the literature.
The profiles of the Bloch line, which are

recognizable from the gray scaling in the y ¼ 0
and in the z ¼ 0 cut in Fig. 15, are in good
agreement with those predicted by analytical
calculations [24,25].
In order to analyze this structure in the close

vicinity of the singularity an atomistic description

is desirable as proposed previously [26]. The
micromagnetic equationsFespecially the ex-
change energy termFare not suitable to describe
the singularity reliably. Nevertheless, the error
resulting from the micromagnetic numerical calcu-
lation affects only a very small volume and the
global error can be deemed low. A large error
occurs especially in the one element which contains
the singularity. If the discretization is sufficiently
high, the error resulting from this small element
should be negligible. It is not expected that this
error significantly influences the result for the
overall magnetic structure on a larger length scale.
This vortex structure with a singularity repre-

sents a further stable state of the magnetization
which can be found in the ferromagnetic cube
specified in Standard Problem No. 3. The stability
of this structure can be understood easily. Any
displacement of the singularity from the center
increases the remanence and hence increases the
stray field energy of the system while no significant
change of the other energy terms is expected. If the
singularity is shifted to the surface along the x-axis
the structure converts into the ordinary vortex
state. An energetic barrier has to be overcome by
applying an external field to bring the singularity
to the surface. In this case, the singularity becomes
a singular point (swirl) and the high exchange
energy near the singularity is released.

5.5. Size dependence of the magnetic ground state

The evaluation of the total energies of the flower
state, the twisted flower state and the vortex state
for different edge lengths yields the diagram shown
in Fig. 16.
The critical edge length at which the magnetic

ground state changes from the twisted flower state
to the vortex state is at 8:57 � ls: At this edge length
we find that the twisted flower state and the vortex
state have the same total energy Etot: This is
considered to be the SDL of the cube analyzed
here. The partial energies and the mean reduced
magnetization for this critical edge length are
displayed in Table 1.
We find a SDL which is qualitatively different

from the one according to the problem specifica-
tion, where a transition between the flower state

Fig. 13. Vortex state. This structure is obtained using two

domains with antiparallel magnetization as starting conditions.
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and the vortex state was expected. For reasons of
comparison between our results and those sub-
mitted by other groups, we also calculated the edge
length at which the flower state and the vortex
state degenerate energetically. This edge length
was determined to L ¼ 8:52 � ls: The results for this
transition are summarized in Table 2.
The total energy of the vortex state with

singularity is relatively high compared with the
other configurations. This magnetization state
does not represent a magnetic ground state due
to its high exchange energy. This holds for the
range of size considered in this paper. As an
example, the energy terms of this magnetization
state at the edge length L ¼ 8:50 � ls are listed in
Table 3. At a significantly larger edge length the
vortex state with singularity is likely to yield a
lower energy than the (ordinary) vortex state
because of the very low stray field energy of this
completely demagnetized structure.

6. Discussion

The calculation of the SDL of the ferromagnetic
cube according to Standard Problem No. 3 has
yielded an unexpected transition of magnetic
ground states with increasing size. In the relevant
range of sizes, the flower state does not represent a
magnetic ground state. The twisted flower state
has a lower energy than the flower state. Calcula-
tions performed by W. Rave after we submitted
our results to the mMAG group are in agreement
with this. As an impact of these results on
Standard Problem No. 3 we suggest the transition
from the twisted flower state to the vortex state in
further submissions.

6.1. Comparison with other groups

Currently, three solutions to Standard Problem
No. 3 are available [2]. The results of Rave et al.

Fig. 14. Vortex state, projection of the magnetization onto different cross-sections.
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Table 1

Critical edge length, total energy and partial energies in units of

Kd � V of the twisted flower state and the vortex state at the

critical edge length (SDL). The non-vanishing components of

the remanence are listed for these structures at the SDL

Twisted flower state 2 vortex state

L ¼ 8:56 � ls; Etot ¼ 0:3034 � KdV

Twisted flower state Vortex state

Stray field 0.2337 0.0820

Exchange 0.0464 0.1693

Anisotropy 0.0232 0.0521

Twisted flower: /mzS ¼ 0:875:
Vortex: /myS ¼ 0:345:

Table 2

Data on the transition between flower state and vortex state as

listed in Table 1

Flower state 2 vortex state

L ¼ 8:52 � ls; Etot ¼ 0:3049 � KdV

Flower state Vortex state

Stray field 0.2839 0.0830

Exchange 0.0158 0.1696

Anisotropy 0.0052 0.0522

Flower: /mzS ¼ 0:973:
Vortex: /myS ¼ 0:351:

Fig. 15. Vortex state with singularity. The singularity is located

in the middle of the sample. No direction of the magnetization

can be assigned to this point.

Fig. 16. Size dependence of the total energy of different

magnetization states in the ferromagnetic cube of Standard

Problem No. 3.

R. Hertel, H. Kronm .uller / Journal of Magnetism and Magnetic Materials 238 (2002) 185–199 197



[16] are in perfect agreement with those by Ribeiro
et al. These groups did not report the twisted
flower state and determined the edge length at
which the flower state and the vortex state have the
same energy.
This ‘‘critical’’ edge length differs in our solution

by 0.6% from these results and the energy of these
arrangements at this edge length differs by 0.7%.
Considering that the calculations presented here
have been performed using a totally different
method, we obtain a very good agreement. The
code used by Ribeiro et al. seems to be very similar
to the one used by Rave et al. (evaluation of the
stray field using FFT, finite differences), so that
the excellent agreement of these two groups might
be less informative.

6.2. Possible errors

We suggest the following reasons as possible
sources for the minor differences between our
results and those submitted previously:

(1) The precision of the calculation of the stray
field energy in our code is limited by the
approximations due to the shell transforma-
tion of the exterior region. The discretization
of the exterior region has been kept constant
for all meshes. An extrapolation to infinity of
the discretization density in the surrounding
shells might lead to slightly different results.

(2) The calculation of the stray field energy by
means of a vector potential is indirect and less
precise than with a scalar potential. In
demagnetized states the magnetic induction B

is essentially equal to the polarization J so that
small errors in the calculation of B might lead
to significant errors when the term ðB � JÞ is
evaluated, see Eq. (3).

(3) Due to the irregular shape and orientation of
the finite elements, any artificial anisotropy
resulting from the numerical representation of
the exchange energy is averaged out. It would
be interesting to analyze whether this also
holds for finite difference representations. In
this regard, it would be illustrative to check
whether the number of neighboring discretiza-
tion cells considered in the calculation of the
exchange energy of three-dimensional struc-
tures has an influence on the result. For two-
dimensional systems a similar study has been
performed by Donahue et al. [27].
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