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Abstract. The helicity dependence of the two-electron photoemission from isotropic targets is
analysed. As prototype reactions, we consider the double ionization of H−(1Se), He(1Se),
Li+(1Se), Be2+(1Se) and B3+(1Se) upon the absorption of a circularly polarized photon.
Assuming the Coulomb field of the nucleus to be dominant over other involved interactions,
we derive analytical expressions for the cross sections and their dependence on the photon
helicity, i.e. for the circular dichroism in these cross sections. This analysis indicates that the
cross sections and the circular dichroism are influenced in a markedly different manner by the
interelectronic correlation. With increasing strength of the Coulomb nuclear field the cross
section rapidly diminishes whilst the dichroism remains finite and its sign varies considerably
with the nuclear charge.

It is analytically concluded that the absence of the dichroism at certain ‘non-geometrical’
points as well as at certain intermediate excess energies is a direct manifestation of the
interelectronic correlation. At threshold and in the high-energy limit negligible dichroism is
anticipated.

1. Introduction

It is established (Berakdar and Klar 1992, Berakdaret al 1993, Kabachnik and Schmidt
1995, Manakovet al 1996, Viefhauset al 1996, Mergelet al 1998) that the two-electron
ejection from a randomly oriented target following the absorption of circularly polarized
light is strongly dependent on the helicity of the photon. In contrast to the case of single
photoionization, this circular dichroism (CD) persists even if the magnetic substates of the
photoion and/or the spin states of the photoelectrons are not resolved.

Using a tensorial recoupling scheme and a formal partial-wave expansion of the
continuum wavefunction of the two electrons in the field of the photoion, the existence
of the CD has been documented. In addition, a vanishing CD has been predicted
at geometrical arrangements for which the vectorska,kb,k are linearly dependent or
|ka| = |kb| (these conditions are called hereafter ‘geometrical zero points’ of the CD),
whereka,kb are the vector momenta of the escaping electrons andk̂ is the wavevector
of the photon. These studies are the formal fundament for the existence of the circular
dichroism, yet they leave in the dark the actual magnitude, sign and behaviour of the
CD.

Predictions of dynamical calculations using approximate two-electron wavefunctions
(Berakdar and Klar 1992, Berakdaret al 1993) underlined the existence of an observable CD
as well as the geometrical zero points. In addition, these calculations revealed a complicated
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behaviour of the CD that could not be interpreted within the formal analysis: at certain,a
priori not clear, angular and energy positions of the outgoing electrons the CD vanishes
and changes sign. Furthermore, a strong dependence of the CD on the photon frequency
has been observed. The origin of this behaviour has not yet been clarified.

Currently there is a considerable interest in the experimental investigation of this kind
of dichroic effects (Soejimaet al 1996, Viefhauset al 1996, Mergelet al 1998) as a new
feature of many-body correlated systems. On the other hand, the important and exciting
applications of CD in single photoemission for determining structural and (macroscopic)
magnetic properties of thin films (Venuset al 1997) fuelled the hope that the present CD
can provide an insight in the electronic correlation of such systems. Thus it is appropriate
to analyse in detail the influence of the individual interactions on the CD and to clarify the
role of electronic correlation and its manifestation in the CD. In addition, there is as yet no
analysis of the element-dependent aspects of the CD. Therefore, the CD is investigated for
a variety of targets.

We study at first the interrelation between the CD and the strength of the Coulomb
nuclear field by switching off the interelectronic correlation. Without any further
approximations, analytical expressions are derived for the CD and the corresponding cross
sections. From these formulae the following conclusions are made.

(1) Within a model of spatially decoupled electrons, the CD as a function ofk̂a, k̂b,
andk does not vanish except for the ‘geometrical points’.

(2) The CD as a function of the photon frequency only diminishes at the double-
ionization threshold and in the high-energy limit.

(3) With increasing strength of the Coulomb nuclear field the dichroism remains finite
whilst the cross section rapidly decreases.

Now combining these findings with calculations that (approximately) account for
electronic correlation we conclude that a vanishing CD at the non-geometrical points as
well as at some intermediate photon frequencies is solely due to electronic coupling.

It is reasonable to presume that this coupling plays a subsidiary role for highly charged
residual ions. Consequently, in this case one can expect that the analytical formulae derived
here are useful.

The derived results are tested in the cases of the double ionization of H−(1Se), He(1Se),
Li+(1Se), Be2+(1Se) and B3+(1Se) following the absorption of a circularly polarized photon.
The first of these targets is a prototype of strong interelectronic coupling whereas for the last
one the interaction with the nucleus is regarded as the ‘strong potential’. Here we focus on
the geometry of the first experiment in which the CD has recently been observed (Viefhaus
et al 1996).

Throughout this paper atomic units are employed and theL ·S interaction is neglected.

2. Theoretical models

The double ionization with circularly polarized light can be quantified by the independent
functions

CD := TDCS(σ+)− TDCS(σ−)
TDCS(σ+)+ TDCS(σ−)

(1)

and, optionally, TDCS(σ+), where TDCS(σ+) (TDCS(σ−)) is the triply (fully) differential
cross section for double ionization by left (right) circularly polarized photon; in the notation
of Jackson (1967) this corresponds to positive (negative) photon helicity.
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Hence, the dynamical and geometrical properties of the CD and TDCS(σ+), in particular
their dependence on the radial and angular interelectronic correlation, are not related to each
other.

As the CD and the TDCS(σ+) are independent facets of the (correlated) electron-pair
emission upon single-photon absorption, an observable CD can be regarded as footprints for
this simultaneous emission in situations where measuring the TDCS(σ±) does not provide
unique information as to whether the escaping electrons are emitted due to the direct
absorption of the photon or other secondary reactions following single photoemission (the
CD vanishes in this case). The latter process is expected to be of prominent importance
in the one-photon two-electron emission from condensed matter (Herrmannet al 1998,
Berakdar 1998).

The present analysis is based on the first-order perturbation theory and on the dipole
approximation for the radiation field. The length form is used throughout.

Upon the absorption of a photon of frequencyω, the TDCS for the emission of two
electrons under the solid angles of aperture d�a and d�b, one of them having energyEb,
is

TDCS := d3σ

d�ad�bdEb
= C

∑
Mf

1

2Ji + 1

∑
Mi

|〈9−ka ,kb |ε̂ ·D|8i〉|2, (2)

whereε̂ is the complex polarization vector of the photon,C = 4π2αckakbω, Eb = k2
b/2, and

αc is the fine-structure constant. Equation (2) averages over the initial magnetic sublevels
Mi , and sums over the magnetic sublevelsMf of the photoion. This study is confined to
two-electron targets with1S symmetry. The dipole operatorD is thenD = ra + rb where
ra/b are the positions of the two electrons with respect to the nucleus. The initial and
the final states are, respectively, described by the three-body wavefunctions8i(ra, rb) and
9−ka ,kb (ra, rb), which have to be approximated in order to get some estimate of the cross
section (2). To systematically investigate the influence of various interactions on the CD
and the TDCS(σ±) we employ deliberately simple expressions for the1Se initial state:

8s = Ns exp[−Zs(ra + rb)] (3)

83h = Nh[exp(−αh1ra − αh2rb)+ exp(−αh1rb − αh2ra)] exp(βrab). (4)

The parametersZs, αh1/h2, β are variationally determined by minimizing the binding energy
andNs/h are normalization factors. A Ritz variational procedure (Bethe and Salpeter 1957)
yields for (3): Zs = Z − 5

16, Ns = Z3
s /π , whereZ is the nuclear charge. This means by

using (3) we account for the electron–electron interaction as a merely effective (angular and
radially independent) screening of the nuclear interaction. According to (3), in the limit of
Z � 1 we obtainZs ≈ Z, i.e. the electron–electron interaction can be neglected altogether
in favour of the nuclear one.

Representing the initial state by equation (4) we (approximately) account for radial and
angular interelectronic coupling.

The final-state wavefunction is modelled by the symmetrized form

9S
ka ,kb

(ra, rb) = [9−ka ,kb (ra, rb)+9−ka ,kb (rb, ra)]/
√

2. (5)

The factor 1/
√

2 follows from the requirement that9S has to be normalized to delta
functions in the six-dimensional space spanned byka⊗kb (the conjugate space tora⊗rb),
i.e. 〈9S

ka ,kb
(ra, rb)|9S

k′a ,k
′
b
(ra, rb)〉 = δ(k′a − ka)δ(k′b − kb). The functions9−ka ,kb (ra, rb)

are already normalized in this way. Thus in order to prove that9S
ka ,kb

(ra, rb) (equation (5))
is correctly normalized it suffices to show that

〈9−pa ,pb (ra, rb)|9−p′a ,p′b (rb, ra)〉 = 0, ∀pa,p′a;pb,p′b ∈ ka ⊗ kb. (6)
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To prove (6) we note that the total Hamiltonian is invariant under the exchange of labelling
a ←→ b. This imposes on the eigenstates of this Hamiltonian the symmetry requirement
9−pa ,pb (ra, rb) = 9−pb,pa (rb, ra). Equation (6) can thus be rewritten as

〈9−pa ,pb (ra, rb)|9−p′b,p′a (ra, rb)〉 = δ(p
′
b − pa)δ(p′a − pb) = 0. (7)

Equation (7) follows from the fact thatpa andp′b (as well aspb andp′a) signify independent
subspaces ofka ⊗ kb (in fact ka ⊗ kb is spanned by the set|pa〉 ⊗ |p′b〉).

Thus, a normalized symmetric expression, such as equation (5), can always be
constructed from wavefunctions that are invariant under the operationa ←→ b. As
wavefunctions that possess this symmetry property we employ

9−ka ,kb (ra, rb) ≈ 93C := (2π)−3NaNbNabe
ika ·ra+ikb·rb

1F1[iβa, 1,−i(kara + ka · ra)]
×1F1[iβb, 1,−i(kbrb + kb · rb)]1F1[iβab, 1,−i(kabrab + kab · rab)], (8)

92C = 93C |βab≡0, (9)

and

92CN = Nab92C. (10)

In equation (8) we definedrab := ra − rb and kab as its conjugate momentum.
The Sommerfeld parameters are given byβa/b := −Z/ka/b, βab := 1/2kab, and the
normalization constants byNj = exp(−πβj/2)0(1− iβj ), j = a, b, ab†. Properties of
the wavefunction (8) have been discussed elsewhere (Brauneret al 1989). In the context
of this study it is important to note that the approximations made to arrive at equation (9)
regard the two escaping electrons as independent particles moving in the field of the nucleus.
In equation (10) the electron–electron repulsion enters via the two-electron Coulomb density
of states which is proportional to|Nab|2. No radial or angular coupling between the two
electrons is included in equation (10). In equation (8) all two-body interactions are treated
on equal footing. With regard to this work we note that the expressions (8), (10) turned out
to be quite adequate for the description of theangular distribution of two emitted electrons
from He(1Se) upon the absorption of alinearly polarized photon (Maulbetschet al 1995,
Maulbetsch 1995). However, as the polarization of the photon enters dynamically into the
cross section, it is not clear how these approximations will perform in the present case of
circular polarization. Furthermore, the approximations (3), (9) become more reasonable for
higher nuclear chargeZ � 1. In fact, equation (3) predicts ground-state binding energies
that are in increasingly better agreement with experimental findings at higherZ. In contrast,
the correlated wavefunction (8) is not expected to perform well forZ � 1 as it does not
contain any screening of the electronic interaction due to the presence of the nuclear charge
(Berakdar 1996).

3. Geometry and dynamics of the CD

Since the target is randomly oriented, the relative dichroism

1 := TDCS(σ+)− TDCS(σ−)

must be, like all observables, invariant under exchange of the two electrons, i.e.

1(ka,kb) = 1(kb,ka). (11)

† The analysis is easily repeated for velocity-dependent effective Sommerfeld parameters with basically the same
conclusions as drawn here.
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Using the expressions (10), (3),1(ka,kb) can be evaluated in closed form (see appendix
A):

1 = −ZF(ka − kb)(k̂a × k̂b) · k̂. (12)

The functionF reads

F = 2Ca(Zs − Z)2(2Zs − Z)2(2fafb)2(k2
a + Z2

s )
−5(k2

b + Z2
s )
−5, (13)

whereCa and fj , j = a, b are given by equation (A3) and equation (A6), respectively.
The geometrical properties of1, in particular the zero points of1 that are described
in the introduction, are entirely expressed in the triple vectorial product in equation (12)
and the factor(ka − kb). F contains the dynamical information. Since(ka − kb) and
(k̂a × k̂b) · k̂ are both antisymmetric with respect to exchange of the two electrons, we
deduceF(ka, kb) = F(kb, ka), for equation (11) must apply. Furthermore, upon inspection
of F(ka, kb) (equation (13)) we verify thatF is positive definite for all combinations ofka
andkb. This means that, within the approximations (3), (9),1 does not vanish except for
the points dictated by the geometrical part. This conclusion is also valid for the normalized
dichroism CD:=1/6 (see equation (B1)), where6 := TDCS(σ+) + TDCS(σ−), since
F/6 is also positive definite (6 > 0). In addition, the final-state wavefunctions (10) and
(9) yield the same CD because the factor|Nab|2 does not depend on the polarization vector
and does not enter the matrix element in a dynamical way. In contrast, the predictions
for the TDCS using equations (10) and (9) are markedly different, as demonstrated by
Maulbetschet al (1995) and Maulbetsch (1995) (see also below). These observations apply
for all wavefunctions that contain the interelectronic interaction via a coordinate-independent
multiplicative factor.

At this stage we summarize, that any zero points in the CD other than the geometrical
ones (described by(ka − kb)(k̂a × k̂b) · k̂) are attributed to electron–electron coupling that
goes beyond equation (10).

3.1. Numerical examples

To illustrate the preceding arguments we consider the geometry under which the CD has
recently been measured (Viefhauset al 1996) (for He(1Se)). The wavevector of the photon
k̂ was chosen perpendicular to the plane spanned by the vectorska andkb. For a fixed
interelectronic angleθab := cos−1 k̂a · k̂b (θab = 150◦, 125◦, 85◦) the CD and the TDCS
were measured as a function of the excess-energy sharing between the two electrons. For
a givenθab the relative magnitude of the TDCS with respect to the other measurements at
different θab has been determined by the experiment. The absolute value of the TDCS at a
specific measured point is, however, unknown. The TDCS(σ+) maps onto TDCS(σ−) via a
reflection at the lineEb = E/2, whereE is the (constant) excess energy. In figure 1 these
data are depicted along with the predictions of the model employing (3), (9), the analytical
formulae are derived in the appendices A and B. It is clear that using the uncorrelated
wavefunctions (3), (9) leads to theoretical predictions for the TDCS which are not in accord
with the experimental finding. The CD, however, is reasonably well described by these
electronically uncorrelated models. If we allow for the final-state interelectronic correlation
(figure 2) by simply using equation (10) we leave the CD unchanged, as argued above, yet we
clearly improve on describing the TDCS data. The change in the TDCS (shown in figure 1)
in response to using the wavefunction (10) (figure 2) is readily understood by analysing
the factor|Nab|2 (see figure 3). When the two electrons escape in opposite directions the
electron–electron repulsion is minimized for equal-energy sharing, i.e.|Nab|2 is largest in
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Figure 1. The TDCS(σ+) (full curve) and TDCS(σ−) (broken curve) for the one-photon double
ionization of He(1Se). The theory employs the wavefunctions (3), (9) for the initial and final
states, respectively. The wavevectork̂ of the photon is chosen as thez-direction. The two
electrons are detected in the upper half of thexy-plane with electron ‘a’ fixed along thex-axis
and electron ‘b’ detected under an angleθab with respect to the first one. The anglesθab are
indicated in the figures. The excess energy is 14.52 eV. The experimental data (full squares
for σ+ and open squares forσ−) are due to Viefhauset al (1996). The theoretical results for
θab = 150◦ (85◦) have been scaled down by a factor of 2 (50). In addition the corresponding
normalized CD is separately depicted.

this case. In contrast, for forward emission of the two electrons the interelectronic coupling
is weakest for asymmetric-energy sharing. Thus, when including the electron–electron
repulsion, in the way it is done in equation (10), the TDCS shown in figure 1 bends at
asymmetric energies forθab = 150◦, 125◦, but remains almost unaffected forθab = 85◦.

The experimental data indicate an inverted sign behaviour of the CD atθab = 85◦, i.e.
at smallEb the CD goes from positive to negative by varyingθab from 150◦ to 85◦. This
means that the CD vanishes at a certain angle in the intervalθab ∈ [85◦, 150◦]. Owing
to the transformation properties of TDCS(σ±) it follows that at this point TDCS(σ−) ≡
TDCS(σ+) possesses symmetric energy sharing with respect toka = kb. As stated
above, such a change of sign is prohibited within the ‘uncorrelated’ models which employ
equations (3), (9) and (10). This does not apply for the wavefunction (8) that includes, in
addition toNab, the radial part of the electron–electron Coulomb wave. Unfortunately, it has
not yet been possible to obtain the CD in closed form for this case. The numerical results
are shown in figure 4 that clearly show the changed sign as indicated by the experiment (cf
Viefhauset al 1996). This confirms the conclusion of the preceding section in that a sign
change of the CD is a footprint of spatial interelectronic coupling.
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Figure 2. The same as in figure 1, however, the final-state wavefunction (10) has been used.
The theory forθab = 150◦ (85◦) has been scaled down by a factor of 3 (20).

As mentioned earlier, the experimental data are internormalized. the models employing
equations (9), (10) fail to reproduce the measured internormalization factor. Using the
correlated final state (8) improves on the agreement with experiment, yet it does not
completely resolve these discrepancies. It turned out (Berakdar 1997 (results not included
here for brevity)) that these shortcoming can be satisfactorily circumvented by using the
highly correlated initial-state wavefunction of Siebbeleset al (1993) and equation (8) for
the final state.

A further important point is the absolute size of the CD. The general trend is observed in
figure 1. From first sight it appears surprising that the CD decreases substantially when we
decrease the angleθab from 150◦ to 85◦, as the geometrical factor in equation (12) indicates
a maximum CD forθab = 90◦. To understand this behaviour we analyse the analytical
formula for the CD,

CD= −ZF (ka − kb)(k̂a × k̂b) · k̂, (14)

whereF = 6/F is given by equation (B6). As6 andF are positive definite functions of
ka andkb, we concludeF(ka, kb) > 0. For the present geometryF simplifies to

F = k2
b + Z2

s

k2
a + Z2

s

(k2
a + Z2)+ k

2
a + Z2

s

k2
b + Z2

s

(k2
b + Z2)+ 2(kakb + Z2) cosθab. (15)

From equation (15) it is obvious thatF is largest (smallest) for forward (backward) emission
of both electrons, i.e.θab ≈ 0 (θab ≈ π ). This dependence is directly reflected into the CD,
according to equation (14), and leads to the behaviour observed in figures 1 and 4 (note,
however, that the CD vanishes atθab = 0, π due to the geometrical factors in equation (14)).



3174 J Berakdar

Figure 3. The factor |Nab|2 that enters into equation (10) plotted, at an excess energy of
14.52 eV, as a function ofα := tan−1 ka/kb andθab.

4. The dependence of the CD and6 on the nuclear charge

As previously noted, the approximate forms (9), (3) become more appropriate with
increasing nuclear chargeZ. Hence, it is worthwhile to study the CD and the TDCS
for moderately largeZ (for Z � 1 the present formalism is not valid, for it neglects the
L · S interaction). For higherZ the screening of the nuclear charge due to the electronic
interaction becomes more and more insignificant, i.e. limZ�1Zs → Z. In this case the
double photoionization becomes more unlikely, as readily deduced from equation (B4) (for
Zs = Z equations (3) and (9) are then uncorrelated solutions of the same Hamiltonian
for different eigenvalues, consequently, the TDCS, given by equation (2), vanishes). In
contrast, the CD (see equations (14), (15)) remains, in general, finite.

The dependence of the CD onZ is linked to the geometry of the experiment. For
example, if we consider the CD as a function ofθab for energies of the electrons such that
ka � Z � kb, then theZ-dependence ofF can be neglected and the CD increases with
increasingZ. For very asymmetric energy sharing, however, the functionF (equation (15))
becomes proportional toZ2 for large nuclear charge. Therefore the CD decreases with
increasingZ. The latter behaviour can be seen in figure 5 for Li+(1Se),Be2+(1Se) and
B3+(1Se) as targets. Comparing figures 1, 2, and 5 it is clear that the CD is much more
robust a function to changes in the double ionization dynamics. The CD results shown in
figure 5 resemble those of figure 1. However, the predictions of figure 5 are expected to
be more reliable than those of figures 1 and 2 since the approximations (3), (10) are more
reasonable for stronger Coulomb fields of the nucleus.

To illustrate the behaviour of the CD in the case of strong interelectronic correlation
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Figure 4. The same as in figure 1, however, the wavefunction (8) has been employed for the
final state. The theoretical TDCS atθab = 150◦ (85◦) have been scaled down by a factor of 2
(3).

we consider in figure 6 the case of H−(1Se). Equation (3) does not support any bound
states for this system whereas equation (4) predicts a binding energy of−0.5239 au in good
agreement with the experimental value of−0.5277 au. In the case of H−(1Se), the CD
has a complicated structure and changes sign a few times for the sameθab. This behaviour
becomes more prevalent at even lower excess energies (Berakdar 1997) in which case the
CD exhibits, basically, oscillatory behaviour.

TheZ-dependence of the CD sign is also depicted in figure 6. For B3+ the sign of the
CD at θab = 125◦ is inverted in comparison with that of He, Li+ and Be2+.

For Li+ and B3+ the use of correlated wavefunctions (equations (4), (8)) results in
substantially different predictions (figure 6) for the CD and the TDCS than those shown
in figure 5. In particular, the magnitude of the TDCS is markedly enhanced due to the
inclusion of electronic interactions (cf figures 5 and 6). According to the correlated models
(equations (4), (8)), the size of the TDCS varies much more rapidly with increasingZ than
in the case for electronically uncorrelated methods (see figure 5). In the absence of any
experimental verification of the predictions depicted in figures 5 and 6, it is not definite
which of those predictions are more reliable, since it turned out (Berakdar 1997) that the
differences in the TDCS, as observed in figures 5 and 6, are mainly due to the use of the
approximation (8) whose range of validity for higherZ is unclear.
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Figure 5. The one-photon double ionization of Li+(1Se), Be2+(1Se), B3+(1Se) in the same
geometry and using the same dynamical models as described in figure 2. The excess energy is
fixed at 14.52 eV, i.e. the photon energy is varied so as to compensate for the different double-
ionization potential of the different targets. The figures depicted are: TDCSLi+ (σ+): heavy full

curve, TDCSLi+ (σ−): heavy broken curve, TDCSBe2+
(σ+): light full curve, TDCSBe2+

(σ−):
dotted curve, TDCSB

3+
(σ+): light broken curve, and TDCSB

3+
(σ−): chain curve. Also shown

is the CD for the case of Li+ (full curve), Be2+ (dotted curve), and B3+ (chain curve). The
TDCS for Be2+ (B3+) has been multiplied by a factor of 2 (3).

5. The photon-frequency dependence of the CD

In a previous work (Berakdaret al 1993) it has been shown that the Wannier–Peterkop–
Rau (Wannier 1953, Peterkop 1971, Rau 1971, 1984 Huetzet al 1991) theory yields
vanishing CD close to the double-ionization threshold. In accordance with this prediction,
dynamical calculations using the wavefunction (8) showed a decreasing CD at lower excess
energies. At some specific intermediate photon frequencies, however, the CD changed
sign. No explanation has yet been offered for this dependence of the CD on the photon
frequency. How the photon-frequency dependence of the CD interplays with the geometrical
arrangement of the experiment also remains an open question.

The photon-frequency dependence of6 and the CD, as described by equations (B4),
(14), is more transparent in the parametrizationka =

√
2E sinα, kb =

√
2E cosα (E is the

excess energy). Equation (14) then reads, CD= Z√2E(cosα−sinα)(k̂a×k̂b)·k̂/F , where

F = 2E cos2 α + Z2
s

2E sin2 α + Z2
s

(2E sin2 α + Z2)+ 2E sin2 α + Z2
s

2E cos2 α + Z2
s

(2E cos2 α + Z2)

+2E(sin 2α + Z2) cosθab.
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Figure 6. Same geometry and same excess energy as in figure 5. The wavefunctions (4) and (8)
have been used for the initial- and final-state wavefunctions, respectively. Included are the TDCS
results for H−(1Se) (TDCS(σ+): heavy full curve, TDCS(σ−): heavy broken curve), Li+(1Se)

(TDCS(σ+): light full curve, TDCS(σ−): dotted curve), and B3+ (TDCS(σ+): broken light
curve, TDCS(σ−): chain curve). The TDCS results for Li+ (B3+) have been multiplied by
a factor of 3000 (105). The corresponding CD (H−(1Se) (heavy full curve), Li+(1Se) (dotted
curve), and B3+ (chain curve)) are also shown.

SinceF = F/6 and the functionF(E), as given by equation (A12), is positive definite it
follows thatF(E) is positive definite as well. At the threshold (E→ 0) the CD decreases
as
√
E. For high photon frequency (E→∞) the CD is proportional to 1/

√
E. Except for

these two limits the CD possesses no additional zero points as a function ofE (this is due
to F(E) > 0, ∀E and CD∝ √E/F ). These conclusions are applicable when employing
the approximate wavefunctions (9), (10) for the final state. When using the wavefunction
given by equation (8) additional zero points of the CD as a function ofE arise and must,
hence, be assigned to the electron–electron interaction.

6. Conclusions

In this work we considered the CD and the fully differential cross section for the one-
photon two-electron emission from H−(1Se), He(1Se), Li+(1Se), Be2+(1Se), and B3+(1Se).
Analytical formulae for the dichroism and the cross sections have been derived and
interpreted within reasonably simple models. Contrasting the predictions of the analytical
formulae with elaborate numerical calculations, it has been possible to deduce that the
interelectronic interaction leads to vanishing CD at certain ‘non-geometrical’ points as well
as at certain photon frequencies. The results of this study indicate that the CD is element



3178 J Berakdar

sensitive and does not follow an obvious trend with increasingZ.
It remains an open question for future theoretical and experimental work on the CD why

electron–electron correlation is preferentially pronounced at the ‘non-geometrical’ region
where the CD vanishes.
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Appendix A. The analytical form of the CD

In this appendix we derive analytical expressions for the TDCS and the CD using the
wavefunction (3), (9), (10). The integrals involved in calculating the TDCS can be reduced
to Fourier transforms of the type

I =
∫

d3r ε̂ · r exp(−βr) exp(ip · r) 1F1(−iα, 1, i[kr + k · r]) = i
∂2

∂βd∂λ

∫
d3r

×exp(−βdr)
r

exp(ip · r + iλε̂ · r) 1F1(−iα, 1, i[kr + k · r])

∣∣∣∣
λ=0,βd=β

= i
∂2

∂βd∂λ

4π

β2
d + P 2

[
(P + k)2− (k + iβd)2

β2
d + P 2

]iα ∣∣∣∣
λ=0,βd=β

, (A1)

whereP := p+λε̂. Employing the wavefunction (3), (10) for the initial and the final state
and making use of equation (A1), the TDCS (equation (2)) can be written in the form

TDCS= Ca|JbIa + JaIb|2, (A2)

where

Ca = 128ka kbωαc|NsNaNbNab|2. (A3)

After some algebraic manipulation, the functionsIj , Jj , j = a, b in equation (A2) can be
expressed as

Ij = −i(1+ iβj )Bj · ε̂, (A4)

and

Jj = fj
[
Zs + βjkj
(k2
j + Z2

s )
2

]
. (A5)

In equation (A5) the real scalarsfj are given by

fj := exp

[
2βj arctan

(
kj

Zs

)]
, (A6)

whereas in equation (A4) the real vectorsBj read

Bj = 2fj

[
2 Zs − Z
(k2
j + Z2

s )
3

]
kj . (A7)



Circular dichroism in one-photon double ionization 3179

We further define the real vectorsAa = BaJb,Ab = BbJa and the un-normalized dichroism
as1 = TDCS(σ+)− TDCS(σ−). From equation (A2) we derive an expression for1:

1 = Ca[ (1+ iβa)Aa · ε̂+ (1+ iβb)Ab · ε̂][(1− iβa)Aa · ε̂∗ + (1− iβb)Ab · ε̂∗]

−Ca[(1+ iβa)Aa · ε̂∗ + (1+ iβb)Ab · ε̂∗]
×[(1− iβa)Aa · ε̂+ (1− iβb)Ab · ε̂]. (A8)

The latter equation can be simplified to

1 = −2iCa(βb − βa)[(Aa × ε̂)(Ab × ε̂∗)− (Aa × ε̂∗)(Ab × ε̂)]. (A9)

Making use of the recoupling formula

(a · b)(c · d) = 1
3(a · c)(b · d)+ 1

2(a× c)(b× d)+ T2(a, c) · T2(b,d), (A10)

whereT2(i, j) is a tensor of rank 2, equation (A9) takes on the form

1 = −ZF(ka − kb)(k̂a × k̂b) · k̂. (A11)

The functionF is then given by

F = 2Ca(Zs − Z)2(2Zs − Z)2(2fafb)2(k2
a + Z2

s )
−5(k2

b + Z2
s )
−5. (A12)

For the present study it is important to note thatF (equation (A12)) is angular independent
and positive definite for allka, kb.

Appendix B. The cross sections

Equation (A11) is the expression for the un-normalized dichroism. To emphasize the
independence of the1 and TDCS(σ±) we define a normalized CD as

CD= 1

6
, (B1)

where

6 := TDCS(σ+)+ TDCS(σ−). (B2)

From equation (A2) and after lengthy, but straightforward algebraic manipulation it follows:

6 = 2Ca{(1+ β2
a )|Aa · ε̂|2+ (1+ β2

b )|Ab · ε̂|2+ (1+ βaβb)[(Aa · ε̂)(Ab · ε̂∗)
+(Ab · ε̂)(Aa · ε̂∗)]}. (B3)

Making use of equations (A4), (A5), (A7), equation (B3) can be reduced to

6 = 2Ca(2fafb)
2 (Zs − Z)2(2Zs − Z)2
(k2
a + Z2

s )
4(k2

b + Z2
s )

4

{
k2
a + Z2

(k2
a + Z2

s )
2
|k̂a · ε̂|2+ k2

b + Z2

(k2
b + Z2

s )
2
|k̂b · ε̂|2

+2
kakb + Z2

(k2
a + Z2

s )(k
2
b + Z2

s )
Re

[
(k̂a · ε̂)(k̂b · ε̂∗)

]}
. (B4)

Now combining equations (B4), (A11) we end up with the final result for the CD

CD := −ZF (ka − kb)(k̂a × k̂b) · k̂, (B5)

whereF is positive definite in the six-dimensionalka ⊗ kb space and has the form

F = k2
b + Z2

s

k2
a + Z2

s

(k2
a + Z2)|k̂a · ε̂|2+ k

2
a + Z2

s

k2
b + Z2

s

(k2
b + Z2)|k̂b · ε̂|2

+2(kakb + Z2)Re [(k̂a · ε̂)(k̂b · ε̂∗)]. (B6)
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