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Abstract

In this report we review recent progress in the understanding of the role of chirality in the multi-electron
emission. A brief account of the chiral single-electron photoemission is given. In this case the chirality of the
experimental set-up is brought about by an initial orientation of the target or/and by specifying a certain
projection of the photoelectron spin. The dependence of the photoelectron spectrum on the chirality of the
experiment is probed by changing the initial orientation of the target or by inverting the photoelectron spin
projection. In a further section we envisage the direct transition of chiral electron pairs from an isotropic
bound initial state into a double-continuum state following the absorption of a circularly polarised photon.
We work out the necessary conditions under which the spectrum of the correlated photoelectron pair shows
a chiral character, i.e. a dependence on the chirality of the exciting photon. The magnitude and the general
behaviour of the chiral e!ects are estimated from simple analytical models and more elaborate numerical
methods are presented for a more quantitative predictions. As a further example for the chiral multi-electron
emission we study the photoelectron Auger-electron coincidence spectrum. The Auger hole is created by
ionising a randomly oriented target by a circular polarised photon. We investigate how the helicity the
photon is transferred to the emitted photoelectron pair. The theoretical "ndings are analysed and interpreted
in light of recent experiments. In a "nal section we focus on the emission of correlated electrons where the
initial state is already oriented, e.g. via optical pumping by circularly polarised light. The initial orientation of
the atom is transferred to the continuum states following the ionisation of the target by low-energy electrons.
We formulate and analyse the theoretical concepts for the transition of the screw sense of the initially bound
atomic electron to the continuum electron pair. Numerical methods for the calculations of the cross-sections
for the electron-impact ionisation of oriented atoms are presented and their results are contrasted against
recent experimental data. ( 2001 Elsevier Science B.V. All rights reserved.

PACS: 33.55.!b; 32.80.!t

Keywords: Circular dichroism; Chirality; Photoionisation; One-photon double ionisation; Chirality in scattering reac-
tions; Ionisation of oriented targets; Few particle scattering dynamics
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1. Introduction

Since the early days of chemistry it has been observed that some compounds exist in two states
that have similar physical and chemical properties. Their optical properties, however, are distinc-
tively di!erent: The plane of polarisation of the light passing through these chemicals is rotated in
a di!erent way. As it turned out the reason for this `optical activitya is a symmetry break caused by
the special inner construction of the optically active molecules [1]. These compounds possess two
di!erent molecular structures that are mirror images of each other just like the left and the right
hand. This special case of spatial symmetry has been termed `stereoisomerya. Stereoisomery occurs
only when the molecules are spatially asymmetric or `chirala, as termed by Lord Keliv, i.e. if they
do not possess a symmetry plane.

The reduction of symmetry, regardless of the way this reduction has been brought about, is in
fact the underlying reason for the optical activity. As demonstrated experimentally [2] the optical
activity can indeed be increased by sculpturing thin "lms that reveals appropriate chirality.
Another well established example of the symmetry reduction leading to optical e!ects is observed
in magnetic materials. In this case the presence of a time reversal symmetry-breaking magnetisa-
tion of the medium results in a non-reciprocal optical e!ects, such as the polarisation rotation. For
metallic, re#ecting media, this phenomenon is known as the magneto-optical Kerr e!ect whereas
for transparent media it is called the Faraday e!ect [3].

Chirality can also be introduced in the reaction via a suitable choice of the experimental set-up
[4,5]. For example, in Ref. [6] two input laser beams (a control and a probe beam) have been used
to study second harmonic generation from achiral thin "lms with in-plane isotropy, i.e. the sample
as such has no chirality. The linear polarisation of the control beam breaks the re#ection symmetry
of the set-up leading thus to a di!erent second harmonic e$ciency for a left and a right-handed
circular polarisation of the probe beam. A further example of an experiment-induced chirality is the
photoelectron emission from oriented linear molecules. As a matter of de"nition, a chiral linear
molecule does not exist, for an arbitrary plane containing the molecular bond can always be chosen
as a plane of symmetry. However, for linear molecules either adsorbed on surfaces [7] or "xed in
space [8] chirality can be triggered by angular-resolved photoemission experiments. In this case,
the molecular axis, the direction of the incident radiation and the momentum vector of the
photoelectron form a right-handed frame whose left-handed re#ection is being well de"ned and
experimentally controllable, e.g. by #ipping the helicity of the impinging photon [9}14].

For atoms the situation is slightly di!erent due to the absence of the molecular bond axis. In fact,
single photoionisation of unpolarised atoms is insensitive to the helicity of the photon and thus the
photoelectron spectra show no chiral e!ects [15,16]. Nonetheless, it is possible to observe chiral
e!ects in atomic systems by constructing a chiral experimental set-up. This can be achieved, e.g., by
performing the photoionisation experiment with the spin of the photoelectron being resolved
[17}21]. In this case a co-ordinate system with well-de"ned orientation can be formed by the wave
vector of the photon, the spin projection of the emitted photoelectron and the photoelectron's
vector momentum. Alternatively, one might dismiss the laborious spin detection of the photo-
electrons but use instead optical pumping to polarise the bound initial state [22}31]. A chiral e!ect
appears then because the orientation of the target, the photon's wave vector and the vector
momentum of the ionised electron build a right or a left handed co-ordinate frame depending, for
example, on the orientation of the initial state. For naturally polarised targets, such as magnetised
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samples, this dichroic e!ect serves as a standard method for the investigation of element selective
magnetic properties [32}35].

In recent years, it became clear that chirality can also be observed in one photon two-electron
emission from completely isotropic targets and without resolving the spins of the photoelectrons
[36}54]. In this case, which is the subject of the present article, the co-ordinate frame is spanned by
the vector momenta of the two photoelectrons (k

a
and k

b
) and the wave vector of the photon k. Since

the photon is absorbed by the two photoelectrons and since the target initial state and the residual
ion state are achiral, one can argue that the chirality of the photon is transferred to the two electron
pair. That is, the pair attains a chirality as an internal degree of freedom that can be probed by
varying the helicity of the photon. At "rst sight the occurrence of such a chirality may seem surprising
as the initial target has no internal sense of rotation and the "nal state attains its chiral character by
resolving the wave vectors of the two photoelectrons. On the other hand, due to the Pauli principle,
the experimental out-come has to be invariant under the exchange of the two photoelectrons.
However, as illustrated in Section 3, the orientation of the co-ordinate system (spanned by k

a
, k

b
and

k) is inverted only when kK
a

and kK
b

or k
a

and k
b

are inverted but not when k
a

is replaced by k
b
. This

subtle feature of `chiral two-electrona photoionisation is unravelled by a formal mathematical
analysis presented in Section 3 which gives insight into the geometrical structure of the chiral e!ect.
Furthermore, we discuss in Section 3 the interplay between geometry and dynamics and point out
ways and models to quantify and present the phenomena of chirality in two-electron photoemission.

As mentioned above, the orientation of an atomic target, e.g. via optical pumping, results in
photoelectron spectra that are sensitive to the helicity of the photon. This dichroic e!ect has also
been observed in the scattering of charged particle from oriented targets, in particular in the
capture channel [55}57]. In this case the appearance of the dichroism (with respect to inversion of
the target orientation) is to be expected since for high energies and small momentum transfer the
charged-particle scattering is intimately related to photoabsorption process via the dipolar limit.
Very recent advances in coincidence detection techniques have rendered possible the investigation
of the chiral two-electron continuum following the electron-impact ionisation of laser-oriented
targets [58,59]. This is particularly interesting, for such studies o!er an opportunity to zoom in the
chirality transfer from a bound system onto a correlated electron pair and to compare with the case
where the chirality of the electron pair had been put into the system by an external perturbation, as
is the case for double-electron emission upon the absorption of a circularly polarised photon. Thus
in Section 4, we envisage theoretically, using a tensorial analysis, the physical and mathematical
structure of the chiral electron-pair continuum states achieved upon electron-impact ionisation of
oriented atoms. Emphasis is put on the symmetry analysis and on the role of the orientation
transfer from the initial target to the two correlated electrons. The formal development is
complemented with numerical studies and the theoretical results are contrasted against recent
experimental "nding. Finally, we conclude this article by a summary and a brief outlook of future
directions. Unless otherwise stated we use atomic units throughout.

2. One-electron photoemission

In this section we present compactly the main feature of the photoelectron spectra in single
photoemission and point out the reason for the appearance of dichroism, i.e. a di!erence in the
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spectrum when the helicity of the photon is inverted. At a "rst glance one might reject a dichroism
in consequence of Yang's theorem [15]. According to this theorem the angular distribution of the
photoelectrons, i.e. the cross-section for the emission of a photoelectron under a solid angle X, is
described by

dp
dX

"

p
0

4p
[1#bP

2
(cos h)] , (2.1)

where p
0

is the total cross section, b is the asymmetry parameter, P
2

is the second Legendre
polynomial and h is the angle between the photoelectron momentum and the light propagation
direction (for circular polarisation) or between the photoelectron momentum and the electric
"eld (for linear polarisation). In particular, we see that the helicity of the light does not enter
into Eq. (2.1), i.e. there is no circular dichroism. Yang's formula however holds only for unpolar-
ised target atoms and provided the spin of the photoelectron is not being observed. As stated
in the introduction, the situation changes when the spin of the electron is resolved or when
the target atoms are polarised, e.g., if the atomic target is polarised with a( being a unit vector
along its quantisation axis, the angular distribution of the photoelectrons has the general form
Ref. [23]

dp
dX

"4p2aa2
0
u(!1)1`q +

LKY

S1q1!q D>0To
K0

B(¸,K,>)YLK
Y0

( p( , a( ) . (2.2)

Here a is the "ne-structure constant, a
0

is the Bohr radius, u is the frequency of the light and p( is
the emission direction of the photoelectron. q quanti"es the polarisation state of the light, i.e.
q"$1 indicates right/left circular polarisation whereas q"0 means linear polarisation. In
Eq. (2.2) we assumed the hyper"ne structure of the target to be resolved and to be labelled by the
quantum numbers F

0
. The population of hyper"ne states of the target is conveniently described by

the density matrix o
F0M0F0M

@
0

(cf. Ref. [60]). In Eq. (2.2) the density matrix has been expressed
through its state multipoles o

K0
(see Ref. [60] for details) via the relation

o
F0M0F0M

@
0
"+

K

(!1)K~F0~M0S
4p

2K#1
SF

0
!M

0
F

0
M@

0
DKM@

0
!M

0
To

K0
>

KM
@
0~M0

(a( ) ,

(2.3)

where >
KQ

is a standard spherical harmonics. The angular function YLK
Y0

( p( , a( ) in Eq. (2.2) is the
result of coupling two spherical harmonics associated with the directions p( and a( and will be
discussed in more details in the next sections. In Eq. (2.2) the generalised asymmetry parameters
B appear. Those are given by

B(¸,K,>)"(2F
0
#1)G

K J
0

J
0

I F
0

F
0
H

+
ljJl{j{J{

(!1)J0`I`F0`J&`J~1
2J[(2l#1)(2l@#1)(2j#1)(2j@#1)
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(2J#1)(2J@#1)Sl0l@0D¸0TG
¸ J@ J

J
&

j j@HG
¸ j@ j

1
2

l l@H

G
¸ J J@

K J
0

J
0

> 1 1 HTJ
&Al

1
2B; JDDrDDJ

0UTJ
&Al@

1
2B j@;J@DDrDDJ

0U
H

. (2.4)

Here the familiar de"nition of angular momentum quantum numbers is used, i.e. ¸ is the total
orbital angular momentum, J is the total electronic angular momentum with coupling scheme
(¸S)J, I is the nuclear spin, and F is the overall angular momentum with coupling scheme (JI)F.

From the symmetry properties of the Clebsch}Gordan coe$cients [cf. Eq. (2.2)] it follows that
the term>"1 describes a circular dichroism provided B and Y are non-vanishing. In the simplest
case (K"¸"1) the corresponding angular function is given by Y11

10
( p( , a( )Jp(]a( . This means that

the circular dichroism can be observed provided the vectors p( and a( are linearly independent (i.e.
not (anti)parallel). The dichroism should be largest if the photoelectron is observed perpendicular
to the quantisation axis a( of the target. A "nite value of B requires J

0
51

2
. The total cross-section

does not reveal any dichroism since the angular integration over the emission direction of the
photoelectron selects ¸"0. The physical origin of the circular dichroism in this case is the
existence of an initial target orientation (described by K"1 and realised for instance by optical
pumping). In course of the photoionisation process this orientation is transferred to the photo-
electron continuum. An absence of the orientation of the target will destroy the dichroic e!ect, as is
the case for isotropic target. However, as we will see in the next section the situation is di!erent
when two photoelectrons are emitted and simultaneously detected.

3. Production of chiral electron pairs by one-photon absorption

In this section we focus on the direct emission of correlated electron pairs with chirality as an
internal degree of freedom. By means of a general mathematical analysis we discuss how the
chirality of the photon (absorbed by the electron pair) is transferred to the two coupled electrons
and in which way the electronic correlation is interfering with this new feature of the electrons.
A numerical analysis with various levels of sophistication allows some insights in the actual values
of this chiral e!ect and in its dependence on the energy of the photon. The di!erent theoretical
approaches are contrasted against the experimental "ndings and the exact analytical results.

The case of double ionisation with one linear polarised photon will not be discussed here unless
it is of direct relevance to the chiral e!ects. The interested reader is referred to the excellent recent
review article [54] and to the references therein.

3.1. General analytical properties of the circular dichroism in one-photon two-electron transitions

At a "xed light frequency u, the energy- and angle-resolved cross-section= for the one-photon
two-electron transition can be written in the form (see for instance [61,62])

=(X
a
, X

b
, E

a
)"C+

M&

1
2J

*
#1

+
M*

DSW~k
a ,kb

De( )DDU
*
TD2 . (3.1)
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Here the momenta of the two escaping electrons are labelled by k
a

and k
b

whereas the Ec is the
incident radiation energy and C"4p2aa2

0
Eckakb . The many-body dipole operator D"+

n
d
n

(in the length form) can be expressed in terms of the single particle dipole operator d
i
. The light

polarisation vector is referred to by e( . In Eq. (2) we average over the initial magnetic sublevels M
*
,

and sum over the magnetic sublevels M
&
of the photoion. If we de"ne E

a
and E

b
as the energies of

the escaping electrons and E"E
a
#E

b
as their total kinetic energy, Eq. (3.1) can be rewritten in

the form

=(k
a
, k

b
)"C@+

M&

SW~k
a ,kb

DDSDsDW~k
a ,kb

T , (3.2)

where C@"4p2aa2
0
Ec and D"e( )D is the two-particle photon dipole operator. The operator S is

given by

S"
1

2J
*
#1

+
M*

DU
*
TSU

*
Dd(Ec#e

*
!E) . (3.3)

Here e
*
is the (negative) binding energy of the two electrons in the initial state. Eq. (3.3) quanti"es

the density of occupied states. In the context of many-particle theory S is usually expressed in terms
of the imaginary part of the Green function G of the occupied states (this is valid for an in"nite
two-particle life time)

!

1
p

ImG(E)"+
M*

DU
*
Td(E!e

*
)SU

*
D . (3.4)

Using Eq. (3.4) the cross-section (3.2) then reads

=(k
a
, k

b
)"!

CA
p

+
M&

SW~k
a ,kb

DD Im G(E!Ec )DsDW~k
a ,kb

T . (3.5)

Most of modern theories of single photoemission from extended systems relies on the so-called
one-step photoelectron current formula that has been derived by Caroli et al. [63]. This formula
rests on the non-equilibrium Green function formalism. The Caroli formula states that upon the
absorption of a one low-energy photon by an electronic system, the photoelectron current J(k) can
be calculated as J(k)"!(1/p)Stk DD ImG(E

k
!Ec)DsDtkT where DtkT is the excited ("nal) state of

the electron with a wave vector k and energy Ek . Thus, relation (3.5) is nothing but the exact
analogue of the Caroli formula for the two-particle current [64]. Hence, the conclusions drawn in
the subsequent sections are readily generalised to extended systems, such as solids and surfaces
[67]. A thorough discussion of the many-particle currents is beyond the scope of the present work,
some details can be found in Refs. [64}66].

For the production of chiral electrons it is decisive that the target (prior to the absorption
process) is randomly oriented, i.e. the chirality of the electron pair is imparted by the photon "eld.
This isotropy of the target state ensures that the projection operator S (as given by Eq. (3.3))
is a scalar. Therefore the operator D@"SD is a polar vector operator with respect to overall
rotations. It should be emphasised, however, that this conclusion would not be true if the initial
state were oriented, as is the case in the previous and the next section.
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Our strategy to extract formal analytical expressions for the circular dichroism is based on a de-
coupling of geometrical from dynamical e!ects. This is achieved by expressing the vectors e( , e( H,
D and D@ as spherical tensors of rank one and employing a tensorial re-coupling scheme that
formally resembles the one used by Fano and Macek [68] in their polarisation analysis of the
dipole radiation emitted from oriented and aligned targets. The product (e( )D)(e( H )D@) can be
expanded symbolically in the outer and inner products as

(e( )D)(e( H )D@)"1
3
(D )D@)#1

2
(e(]e( H) ) (D]D@)#¹

2
(e( , e( H) )¹

2
(D, D@) , (3.6)

where ¹
2
(x, y) stands for a tensor of rank 2 formed from the two spherical tensors of rank one

(the components of ¹
2
(x, y) are given by the formula ¹

2,Q
(x, y)"+

p,q
S1p1!qD2QTx

1,p
y
1,q

where
S2D2T denotes the Clebsch}Gordon coe$cients).

A change of the light helicity corresponds to a replacement of e( by its complex conjugate e( H. The
vector product term in relation (3.6) is the only term being odd with respect to this replacement.
This term is therefore the quantity sensitive to inversion of the helicity of the photon.

In what follows we make the convention e( (e( H) to describe left (right) circularly polarised light.
Furthermore, we denote the di!erence of the cross-sections for left and right circularly polarised
light as the circular dichroism (hereafter referred to by CD), i.e. CD"=(p`)!=(p~) where
p` (p~) stands for the helicity of the left (right) hand circularly polarised photon. Further
simpli"cation is achieved by assuming the z-axis to be the direction k of the incident light. With
e(" 1J2

(1, i, 0) and e(]e( H"!ikK we conclude for the dichroism the relation

CD(p`, k
a
, k

b
)"!iC+

M&

SW~k
a ,kb

D[D]D@]
0
DW~k

a ,kb
T , (3.7)

where the index zero refers to the z-component, i.e. [D]D@]
0
"[D]D@] ) kK . This identi"es the CD

as an expectation value of the pseudovector operator D]D@. We note in this context that, for
a general N electron system, the dichroism CD cannot be regarded as an orientation in the sense of
Fano and Macek [68]. This is because, in contrast to the cases treated in Ref. [68], the present "nal
state is generally not an eigenstate of total angular momentum (except for a 1S initial state).

So far this formal development applies as it stands for single photoionisation. However, as we
mentioned earlier, according to Yang's formula [15] the CD should vanish in case of single
photoemission. Thus, it is instructive to show (a) that our mathematical analysis is consistent with
Yang's formula and (b) that the CD is generally "nite for many-electron emission.

To this end we de"ne the circular dichroism d in the case of single photoemission as the
correspondence to Eq. (3.7), namely

dJStk D[D]D@]
0
DtkT . (3.8)

As we will show d vanishes due to conservation of parity. This is deduced from the partial wave
expansion

DtkT"+
lm

Dt
lm

TC
lm

(kK ) (3.9)

where C
lm

(kK ) is a spherical harmonic in the notation of Ref. [69]. Upon substituting (3.9) into
the expression for d, applying the Wigner}Eckart theorem, and performing the sum over m,
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we conclude

dJ+
l{l

(!)l{A
l@ l 1

0 0 0BC10
(kK )St

l{
DDD]D@DDW~

l
T . (3.10)

The symbol

A
j
1

j
2

j
3

m
1

m
2

m
3
B

is a 3!j symbol. The point is now that only even or only odd values of l and l@ contribute because
of parity conservation. We assume here that the initial state is a parity eigenstate which is usually
the case. The 3!j symbol in (9) is then equal to zero because l@#l#1"odd. Moreover l@"l
because (l@, l, 1) satisfy a triangular relation.

In contrast to single photoemission, for one-photon double ionisation (PDI) parity conservation
does not imply the absence of dichroism. To show this we proceed as in the case of single
photoionisation and expand the "nal state into partial waves,

DW~k
a
k
b
T" +

la lb lm

DW~
la lb lm

TBla lb
lm

(kK
a
, kK

b
) . (3.11)

The bipolar spherical harmonics Bla lb
lm

(kK
a
, kK

b
) [69] are basically the tensor products of two spherical

harmonics (with appropriate normalisation) and are given by

Bl1 l2
lm

(x( , y( )" +
m1m2

Sl
1
m

1
l
2
m

2
D lmTC

l1m1
(x( )C

l2m2
(y( ) .

Parity conservation in (10) implies that l
a
#l

b
is either even or odd. We substitute the partial wave

expansion (3.11) into (3.7) and apply the Clebsch}Gordan series for bipolar harmonics [70]

Bla lb
lm

(a( , bK )Bl{a l{b
l{m{

(a( , bK )H"(!)la`lb`l{`m{J(2l#1)(2l@#1)

+
LaLbKQ

(2¸
a
#1)(2¸

b
#1)A

l
a

l@
a

¸
a

0 0 0 BA
l
b

l@
b

¸
b

0 0 0 BG
l l@ K

l
a

l@
a

¸
a

l
b

l@
b

¸
b
H

Slml@!m@ D KQTBLaLb
KQ

(a( , bK ) . (3.12)

In the "nal state we couple the angular momentum J
&
of the ion with the angular momentum l of

the electron pair to the resultant J. Applying the Wigner}Eckart theorem, the summation over all
magnetic quantum numbers can then be performed, and we "nd for the dichroism

CD(p`, k
a
, k

b
)"!i +

LaLb

c
LaLb

BLaLb
10

(kK
a
, kK

b
) (3.13)
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with

c
LaLb

"C +
la lb ll

@
a l

@
b l{JJ{

(!)la`lb`l{`J{`J&`1(2J@#1)(2¸
a
#1)(2¸

b
#1)

S
(2l#1)(2l@#1)

3 A
l
a

l@
a

¸
a

0 0 0 BA
l
b

l@
b

¸
b

0 0 0 BG
l@ J

&
J@

J 1 l HG
l l@ 1

l
a

l@
a

¸
a

l
b

l@
b

¸
b
H

SJ
&
(l@
a
l@
b
)l@;J@DDD]D@DDJ

&
(l
a
l
b
)l;JT . (3.14)

To simplify further Eqs. (3.13) and (3.14) we remark that, usually, in a photoionisation experiment
the initial target as well as the "nal ion are in parity eigenstates. The pair of escaping electrons in
one-photon double ionisation will therefore be in a parity eigenstate with parity p"(!)la`lb

where l
a

and l
b

are the orbital angular momenta of the electrons. Since the two electrons are
exchanging energy and momentum the one-electron angular momentum states are not useful to
characterise the pair's states. In fact, many pairs of angular momenta (l

a
, l
b
) will contribute to the

two-electron continuum state such that l
a
#l

b
is either even or odd. For example, double

photoionisation of He or H~ in the ground state (1S) leads to the 1P0$$ symmetry with con"gura-
tions (l

a
, l
b
)"(s, p), (p, d), (d, f ),2 .

From (3.14) it follows that only pairs of (¸
a
,¸

b
) with ¸

a
"¸

b
contribute to the circular

dichroism (3.13). Further inspection of the 3!j symbols in (3.14) reveals that "nite coe$cients
require the following relation be ful"lled:

l
a
#l@

a
#¸

a
"even ,

l
b
#l@

b
#¸

b
"even .

We add these two equations and conclude ¸
a
#¸

b
"even because l

a
#l

b
and l@

a
#l@

b
are both

either even or odd. Then we see from the 9!j symbol that the three numbers (1,¸
a
,¸

b
) satisfy

a triangular relation. Since the case ¸
a
"¸

b
$1 leads to odd values of ¸

a
#¸

b
we arrive at

¸
a
"¸

b
. Therefore, Eq. (3.13) can be simpli"ed as

CD(p`, k
a
, k

b
)"!i+

L

c
LL

BLL
10

(kK
a
, kK

b
) . (3.15)

Since only the diagonal elements c
LL

contribute to Eq. (3.15) one might expect that the dichroism is
less sensitive a quantity to the description of the scattering dynamics than the cross-sections. As
discussed below, the CD carries particular information related to phase di!erences of the optical
transition amplitudes. A measurement of the CD alone is not su$cient for a complete description
of the photodouble-ionisation (PDI) process.

3.2. Propensity rules for the circular dichroism

As any physical observable, the CD must be invariant under an exchange of the two electrons, i.e.

CD(p`, k
a
, k

b
)"CD(p`, k

b
, k

a
) . (3.16)
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In addition as clear from the de"nition of the dichroism the CD is odd with respect to inversion of
the helicity of the photon, i.e.

CD(p`, k
a
, k

b
)"!CD(p~, k

a
, k

b
) . (3.17)

From Eqs. (3.16) and (3.17) we conclude

CD(p`, k
a
, k

b
)"!CD(p~, k

b
, k

a
) (3.18)

this means a grand re#ection of the experimental set-up results in a sign change of the CD (the CD
is a pseudoscalar in the laboratory coordinate frame). To analyse the behaviour of the CD when the
electrons' energies and the solid angles X

a
, X

b
are the relevant parameters we have to discuss the

angular functions BLL
10

(kK
a
, kK

b
). These functions are decisive for the angular behaviour of the CD as

seen from Eq. (3.15). They are explicitly given by

BLL
10

(kK
a
, kK

b
)"+

M

S¸M¸!M D 10TC
LM

(kK
a
)C

L~M
(kK

b
) . (3.19)

From this equation we deduce the following properties:

1. BLL
10

(kK
a
, kK

b
) are purely imaginary. This follows from the relation C

LM
(x( )H"(!)MC

L~M
(x( ) for

spherical harmonics and the symmetry formula S¸!M¸M D 10T"!S¸M¸!M D 10T for
Clebsch}Gordan coe$cients. The dichroism CD is a di!erence of cross-sections and as such
must be real. Therefore, we conclude that the coe$cients c

LL
in (14) are real as well.

2. BLL
10

(kK
a
, kK

b
) are parity-even in the solid angles associated with the momenta k

a
, k

b
of the two

photoelectrons, i.e. BLL
10

(!kK
a
,!kK

b
)"BLL

10
(kK

a
, kK

b
) which follows from the parity of spherical

harmonics given by C
LM

(!x( )"(!)LC
LM

(x( ).
3. From the symmetry of Clebsch}Gordan coe$cients, we deduce furthermore that Eq. (3.19) is

odd with respect to exchange of the electrons, i.e. BLL
10

(kK
b
, kK

a
)"!BLL

10
(kK

a
, kK

b
). This relation

implies that:
4. BLL

10
(kK

a
, kK

b
) vanishes when the two electrons escape in the same direction and, due to relation

(3.16), the functions c
LL

has to satisfy the condition

c
LL

(k
a
, k

b
)"!c

LL
(k

b
, k

a
) . (3.20)

This leads to a vanishing dichroism for emission of two electrons with equal energies.
5. BLL

10
vanishes when the electrons recede in a back-to-back con"guration (kK

b
DD!kK

a
). This is

concluded by considering the quantity

BLL
10

(x( , x( )"+
M

S¸M¸!M D 10TC
LM

(x( )C
L~M

(x( ) (3.21)

and substituting the expansion

C
LM

(x( )C
L~M

(x( )"+
K

S¸M¸!M D K0TS¸0¸0 D K0TC
K0

(x( ) . (3.22)

The orthogonality of Clebsch}Gordan coe$cients selects then the only value K"1 for which,
however, S¸0¸0 D 10T"0. For kK

b
"!kK

a
we use C

LM
(!x( )"(!)LC

LM
(x( ) and repeat the

arguments above.
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6. The CD vanishes if the direction of the incident light kK and the electrons' vector momenta k
a
, k

b
are linearly dependent. The above consideration assumes a co-ordinate frame with the z-axis
being along kK . Now let us select an arbitrary direction of kK

a
described by the polar angles h

a
, u

a
.

If the three vectors kK and k
a
, k

b
are linearly dependent the spherical position of kK

b
is determined

by h
"
, u

b
"u

a
#Np with N"integer. The product of phase factors of the spherical harmonics

is then real. For this reason also the bipolar harmonics (3.19) are real which contradicts the
prediction that they are purely imaginary, except for the case when they are equal to zero.

7. The CD vanishes in a non-coincidence experiment, i.e. if we integrate over one of the directions
kK
a

or kK
b
. This follows directly from the orthogonality of spherical harmonics and ¸51. Thus,

one can interpret the CD as a feature which is shared by the correlated chiral electron pair,
exclusively. If one of the electrons of the chiral pair is not detected the CD is destroyed. This fact
together with the exact geometrical propensity rules exposed above makes the CD a predestine
candidate for the study of entanglement in quantum systems.

3.3. Alternative routes to the circular dichroism

As shown by an elegant mathematical analysis [40,48,49], the propensity rules of CD, as listed
above, appear naturally from the parameterisation of the cross-section (3.1) as

=(X
a
, X

b
, E

a
)"p

0
#mp

1
kK ) (kK

a
]kK

b
)#p

2
M3Re[(e( ) kK

a
)(e( H ) kK

b
)]!kK

a
) kK

b
N

#p(1)
2

(3De( ) kK
a
D!1)#p(2)

2
(3De( ) kK

b
D!1) . (3.23)

Here m is the degree of circular polarisation and the "ve dependent parameters p
0
, p

1
, p

2
, p(1@2)

2
depend on the energies of the ejected electrons and on the mutual angle between the emission
directions of the two electrons. It is the term mp

1
kK ) (kK

a
]kK

b
) in Eq. (3.23) that describes the CD. The

triple product in this term encompasses, basically all the geometrical properties of the CD. The
dynamical features of the CD are contained in the function p

1
. The numerical evaluation of this

function requires a dynamical model for the motion of the electron pair in the presence of the "eld
of the atom. Such models will be presented and discussed in the forthcoming sections.

In Ref. [40] Eq. (3.23) has been derived using a reduction scheme for bipolar harmonics. Another
approach that proved very useful in analysing the PDI process relies on the Wannier}Peter-
kop}Rau theory [71}73], as formulated in Ref. [74]. To illustrate the use of this theory we consider
an initial state of the electron pair with a 1S%7%/ symmetry. Thus, the two coupled photoelectrons go
over into a 1P0$$ symmetry with magnetic quantum numbers M"$1 upon the absorption of
a circularly polarised photon. According to Table 3 of Ref. [74] the general form of the "nal state
wave function reads

W
M/B1

"$F'Msin0
a
eB*ra#sin 0

b
eB*rbN$F6M!sin0

a
eB*ra#sin 0

b
eB*rbN , (3.24)

where the functions F' and F6 depend on the rotationally invariant positions r
a
, r

b
of the two

electrons and the inter-electronic angle 0
ab
"cos~1(r(

a
) r(

b
). In Eq. (3.24) the angles 0

a
, 0

b
and u

a
, u

b
are the polar and azimuthal angles of r

a
and r

b
in a frame with the z-axis along the direction of the

photon beam.
The functions F' and F6 are, respectively, symmetric and antisymmetric under an interchange

r
a
% r

b
. To arrive at the angular structure of the PDI cross-section one employs the asymptotic
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form of (3.24) which yields

=(X
a
, X

b
, E

a
)D
M/B1

"Da
'
Msin h

a
#sin h

"
eB*rN#a

6
M!sin h

a
#sin h

"
eB*rND2 . (3.25)

The complex functions a
'
(E

a
, E

b
, h

ab
) and a

6
(E

a
, E

b
, h

ab
) are given by the asymptotic behavior of

quantities F' and F6 in case the azimuthal and polar angles /
a@b

and h
a@b

are now being associated
with the directions of the momenta k

a
and k

b
as measured with respect to a z direction pointing into

the photon beam direction, and u is given by u"/
b
!/

a
. In the particular case of symmetric

energy sharing (E
a
"E

b
) the asymptotic form of the "nal state is symmetric in r

a
% r

b
, and this

causes the second term in (3.25) to vanish, i.e. a
6
"0.

The CD is derived from Eq. (3.25) to be

CD"8 Im(a
'
aH
6
) sin h

a
sin h

"
sinu . (3.26)

Again we verify from this relation the propensity rules for the CD, e.g., there is no dichroism if
k
a

and k
b

are linearly dependent, i.e. if (u"0 or p). The CD vanishes in symmetric energy sharing
(E

a
"E

b
) because in this case a

6
"0. Eq. (3.26) suggests "rst rough estimate for the value of the

CD, namely the CD is largest for h
a
"h

"
"u"p/2 (note, however, that the gerade and the

ungerade amplitudes depend on the inter-electronic angle).
The angular dependence of CD as given in (3.26) is consistent with the structure of the CD as

given by Eq. (3.15) in terms of the bipolar harmonics. In fact, it is straightforward to show that the
angular part sin h

a
sin h

"
sinu of Eq. (3.26) can be written as

sin h
a
sin h

"
sinu"!2iB11

10
(kK

a
, kK

b
)"(!2i)

i

J2
kK ) (kK

a
]kK

b
) . (3.27)

Furthermore, one can verify that the portion B11
10

is contained in all angular functions BLL
10

. In other
words, BLL

10
can be written as BLL

10
"B11

10
BI LL

10
"(i/J2)kK ) (kK

a
]kK

b
)BI LL

10
. This relation allows to rewrite

Eq. (3.15) in the form

CD(p`, k
a
, k

b
)"

i

J2
+
L

c
LL

BI LL
10

kK ) (kK
a
]kK

b
) . (3.28)

Hence, all three forms of the CD given by Eqs. (3.15), (3.23) and (3.26) have the same angular
structure. In fact, the general parameterisation (3.23) can be expressed in terms of the gerade and
the ungerade amplitudes a

'
and a

6
as [48,49]

p
0
"p(1)

2
#p(2)

2
#p

2
cos h

ab
,

p
1
"!i[a

'
aH
6
!aH

'
a
6
] ,

p(1)
2

"1
3
MDa

'
D2#(a

'
aH
6
#aH

'
a
6
)#Da

6
D2N ,

p(2)
2

"1
3
MDa

'
D2!(a

'
aH
6
#aH

'
a
6
)#Da

6
D2N ,

p
2
"2

3
MDa

'
D2!Da

6
D2N ,

p
0
"p(1)

2
#p(2)

2
#p

2
cos h

ab
. (3.29)
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Fig. 1. An illustration of the role of the Pauli principle in the chiral electron-pair emission following the absorption of
a single photon. The wave vector of the photon is perpendicular to the plane of the drawing and its helicity is indicated by
cpB . The x-axis is the bisector of the inter-electron emission angle. The arrows labelled by e

a
and e

b
indicate the emission

direction of the photoelectrons and their lengths correspond to their relative energies.

3.4. The circular dichroism and the role of the Pauli principle

The angular dependence of the CD in the laboratory frame, as given by Eqs. (3.28), (3.23) and
(3.26), allows the interpretation that the three vectors kK

a
, kK

b
and kK span a (generally non-ortho-

gonal) co-ordinate system S in space. An inversion of the helicity of the photon corresponds to an
inversion of the orientation ofS. Such an inversion of the orientation of S (and hence an inversion
of the helicity) can also be achieved by exchanging the momentum directions kK

a
, kK

b
. On the other

hand, the Pauli principle imposes the condition that for a given helicity state of the photon, the
coincidence rate should be invariant under an exchange of the roles of the two emerging electrons,
as stated in Eq. (3.16). Thus, it is useful to look into the role of the Pauli principle and its e!ect on
the CD. For this we choose a situation where the photon beam is perpendicular to the plane
spanned by kK

a
, kK

b
. The coincidence rate depends only on the electrons' energies and the inter-

electronic angle h
ab

. Therefore, we choose, without any loss of generality, the x-axis as the bisector
of h

ab
(cf. Fig. 1). In Fig. 1(a) and Fig. 1(b) we consider the same experimental set-up with,

respectively, positive and negative helicity of the photon. Thus the CD is the di!erent in the
coincidence rate between the situation in Fig. 1(a) and Fig. 1(b). It is clear that Fig. 1(a) cannot be
obtained from Fig. 1(b) by any rotation operation. The Pauli-principle requires that the outcome of
the experiment should be the same for cases of Fig. 1(a) and Fig. 1(d). Equivalently, the set-up of
Figs. 1(b) and (e) should yield the same results. It is clear from the diagrams that the fast electron
(indicated by the longer arrow) is situated always to the right of the x-axis and this situation
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remains unchanged upon inclusion of the Pauli principle. As shown in Fig. 1(b) and Fig. 1(c) as well
as in Fig. 1(e) and Fig. 1(f ), the helicity state can be #ipped from p~ to p` by a 1803 rotation at the
x-axis. However, in this case the faster electron will emerge left to the x-axis. From these diagrams
(cf. in particular Fig. 1(b) and Fig. 1(c)) it is obvious that the CD disappears when the two electrons
escape with equal energies and/or they emerge parallel or anti-parallel to each others. In this sense
the CD can be regarded as a left}right asymmetry e!ect. The appearance of this asymmetry is
a manifestation of the parity conservation: The system as a whole (the photon and the atom) has
a certain parity, carried in the initial state by the photon. After the photon had been absorbed, this
parity state is given over to the two electrons that become a chiral electron pair.

3.5. Consistency conditions

Having established the general features of the CD we turn now to the actual calculations of
its value for various kinematics and targets. Before introducing sophisticated dynamical models
it is instructive to develop consistency checks that are independent of the speci"c theoretical or
experimental approach. To this end we construct the circular polarised state of the photons from
two independent linear polarised states. Using a co-ordinate system where the z-axis is aligned
along the wave vector of the circular photon, the optical transition amplitude with left (right)-hand
circularly polarised light, labelled as ¹p` (¹p~), can thus be written as

¹pB"c(¹
x
$i¹

y
) . (3.30)

Here, ¹
x

(¹
y
) is the transition amplitude for the DPE with linear polarised light where the electric

"eld vector is aligned along the x (y) direction, and c"1/J2. The photoelectrons are emitted with
momenta k

a
and k

b
determined in the co-ordinate system x, y, z. For the following it is instructive

to write Eq. (3.30) in the form

¹pB"c[D¹
x
Dexp(i/

x
)#D¹

y
Dexp(i/

y
$ip/2)] , (3.31)

where /
x

(/
y
) is the phase of ¹

x
(¹

y
). Thus, the quantities D¹pB D2 that determine the cross-section

(3.1) attain the form

D¹pB D2"1
2
[D¹

x
D2#D¹

y
D2$2D¹

x
DD¹

y
D sin(/

y
!/

x
)] . (3.32)

For the following, it is useful to de"ne a normalised CD as CD
n

such that

CD
n
:"

CD
=(p`, k

a
, k

b
)#=(p~, k

a
, k

b
)

. (3.33)

From Eq. (3.32) we obtain

CD
n
"

2D¹
x
DD¹

y
D

D¹
x
D2#D¹

y
D2

sin(/
y
!/

x
) . (3.34)

Equivalently, one can show that

CD
n
"!

2
D¹

x
D2#D¹

y
D2

Im(¹
y
¹H

x
) . (3.35)
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In line with the preceding sections we conclude therefore that by changing the polarisation state
of the photon information on the phase diwerences of the optical transition amplitudes can be
obtained. A quantity that is independent of the polarisation state of the photon can be deduced
from D¹

x
D2 and D¹

y
D2 to be

R :"D¹p` D2#D¹p~ D2"D¹
x
D2#D¹

y
D2 . (3.36)

In addition to this polarisation independent quantity, we can characterise the dependence of the
PDI process with linear polarised light on the direction of the polarisation axis by de"ning
a normalised linear dichroism (LD

n
) as

LD
n
"

D¹
x
D2!D¹

y
D2

R
. (3.37)

We remark however, that D¹
x
D2 and D¹

y
D2 di!er only in the orientation of the reference axis de"ned

by the oscillating electronic "eld vector of the photon. Therefore, the LD
n
does not provide further

dynamical details (such as the phase information) other than those already contained in D¹
x
D2 and

D¹
y
D2.

The polarisation-independent relation (3.36) does not rely on a speci"c theoretical model for the
absorption dynamics (except for the dipole approximation for the radiation "eld). Thus, Eq. (3.36)
is in sofar useful as it can be used to check the consistency of the cross-sections D¹pB D2 with D¹

x@y
D2

(calculated or measured), as done in Ref. [45]. In addition, we can use Eq. (3.36) to test the
consistency of PDI cross-sections with linear polarised light, i.e. the internal consistency of D¹

x
D and

D¹
y
D. To see this let us consider the situation where both electrons are detected in the x}y plane. In

this case one can show that

¹pB (u
a
!u

b
)"¹pB(u@

a
!u@

b
), M∀u@

a
, u@

b
, u

a
,u

b
3[0, 2p] D u

a
!u

b
"u@

a
!u@

b
N .

This means, ¹pB depend on the inter-electronic relative angle only. Therefore, according to
Eq. (3.36), the following equality applies:

R(u
a
!u

b
)"R(u@

a
!u@

b
)"D¹

x
(u

a
!u

b
)D2#D¹

y
(u

a
!u

b
)D2

"D¹
x
(u@

a
!u@

b
)D2#D¹

y
(u@

a
!u@

b
)D2 . (3.38)

We note on the other hand that

¹
x@y

(u
a
!u

b
)O¹

x@y
(u@

a
!u@

b
) for u

a@b
Ou@

a@b
.

Hence, the inter-relation Eq. (3.38) for the PDI measurement with linear polarised light must be
given.

From Eq. (3.34) it is readily deduced that
(a) the CD vanishes for /

y
!/

x
"np and n is an integer, this is for example the case where ¹

y
and

¹
x

are both pure imaginary or pure real. We remark here, that the phases depend on the
frequency in a dynamical way. Thus, it might well be that at a certain frequency the phase
relation is such that the CD

n
vanishes (see the calculations below).

(b) The CD
n

vanishes when ¹
x

and/or ¹
y

vanishes. This observation is most valuable for
interpreting the structure of the measured cross-sections with polarised light, as done below.
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(c) The CD
n

diminishes as D¹
l
D/D¹

j
D; j"x, y; l"y,x for D¹

j
D<D¹

l
D. This condition can be used to

reveal the high- and low-frequency behaviour of the PDI cross-section [45].

3.6. Closed analytical expressions for the circular dichroism

The previous sections revealed a wealth of information about the properties of the circular
dichroism and the information contained within. However, we were basically able to make some
predictions concerning the geometry where the dichroism vanishes. It is clear that if the CD is to be
"nite there must be kind of a peak or probably structured peak between the various situations
where the dichroism diminishes. For an accurate prediction of the size and shape of the CD one has
to resort to some modelling of the many-body states (at least two electrons in the "eld of a positive
point charge). Before presenting sophisticated theories that cannot give a closed analytical formula
for the CD we investigate simpler cases in which the rough behaviour and size of the CD can be
deduced analytically. As it is clear from Eq. (3.1), expressions for the many-body wave functions in
the initial (DU

*
T) and the "nal state (DW~T) are needed. While, the initial bound state can be

described theoretically with standard methods to a very good accuracy, the correlated dynamics in
the "nal state is still a challenge for theorists. Here we have to resort to simple expressions for DU

*
T

and DW~T to arrive at analytical results for the CD. For an initial two-electron state with
1S% symmetry we employ the expression

U
s
"N

4
exp[!Z

s
(r
a
#r

b
)] , (3.39)

where r
a

and r
b

are the positions of the two electrons with respect to the nucleus. The parameter
Z

s
is variationally determined by minimising the binding energy and N

s
is a normalisation factor.

A Ritz variational procedure [81] yields Z
s
"Z!5/16, N

s
"Z3

s
/p, where Z is the nuclear charge.

This means by using (3.39) we account for the electron}electron interaction as a mere e!ective
(angular and radially independent) screening of the nuclear interaction. According to (3.39), in the
limit of Z<1 we obtain Z

s
+Z, i.e. the electron}electron interaction can be neglected altogether

in favour of the nuclear one. In the "nal state we assume the two electrons to move in an e!ective
"eld of the nucleus. The electron}electron interaction is subsumed into a dynamical screening of
the strength of interaction of the electrons with the residual ion. Mathematically formulated this
yields for DW~T the expression [81]

W~k
a ,kb

(r
a
, r

b
)+W

2c
:"(2p)~3N

a
N

b
e*ka > r

a`*kb > r
b
1
F

1
[ib

a
, 1,!i(k

a
r
a
#k

a
) r

a
)]

1
F
1
[ib

b
, 1,!i(k

b
r
b
#k

b
) r

b
)] . (3.40)

Here, the functions
1
F

1
(a, b, z) are the con#uent hypergeometric functions [75] and the Sommer-

feld parameters, that characterise the strength of the two-particle Coulomb interaction, are given
by b

a@b
:"!Z

a@b
/k

a@b
. There are various models for deriving reasonable values of the e!ective

charges ([76] and references therein). It is not our purpose here to go into the details of this subject.
For the sake of simplicity and clarity we make the replacement Z

a
"Z"Z

b
, i.e. we neglect

screening e!ects. The same mathematical steps involved in the derivation of the CD can be
repeated when Z

a@b
depend on the momenta of the two electrons. The normalisation constants in

Eq. (3.40) N
j
, j"a, b are given by N

j
"exp(!pb

j
/2)C(1!ib

j
), j"a, b. Upon the replacement
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b
a
,0,b

b
in Eq. (3.40) we arrive at the plane wave approximation for the photoelectrons and the

optical transition amplitude in velocity form derives from the expression

Sk
a
, k

b
De( ) (+

a
#+

b
)DU

*
T"Pdp dqSk

a
, k

b
De( ) (+

a
#+

b
)D p, qTS p, qDU

*
T

"ie( ) (k
a
#k

b
)UI

*
(k

a
, k

b
) , (3.41)

where D p, qT is a complete set of plane waves and UI
*
(k

a
, k

b
) is the (six-dimensional) Fourier

transform of the initial state. Since the initial state is randomly oriented the Fourier transform is
real and the expression (3.41) is imaginary for any real polarisation vector. Thus, according to
Eq. (3.35), the CD vanishes in the plane-wave approximation. Eq. (3.41) makes clear that the phases
/
x

and /
y

are primarily related to the functional dependence of the phases of the "nal state, for
Eq. (3.41) is valid for the exact "nal-state wave function if rewritten in the form

SW~k
a ,kb

De( ) (+
a
#+

b
)DU

*
T"ie( )Pdp dq(p#q)WI ~Hk

a ,kb
( p, q)UI

*
( p, q) . (3.42)

Again, the random initial state does not contribute to the phase accumulation (as described by the
integral) to result in the dynamical phases /

x
and /

y
. In Eq. (3.42) WI ~k

a ,kb
is the Fourier transform of

the two-electron "nal state whose phase is the decisive quantity for the CD. This makes compre-
hensible why the s2 con"guration in the "nal state cannot contribute to the dichroism whereas the
simplest approximation of the "nal state as being (s, p) 1P0 leads to a "nite dichroism [37].

Using expressions (3.40) and (3.39), the dichroism, CD(k
a
, k

b
), is calculated in closed form

(see Appendix A):

CD"!ZF(k
a
!k

b
)(kK

a
]kK

b
) ) kK . (3.43)

The function F reads

F(k
a
, k

b
)"2C

a
(Z

s
!Z)2(2Z

s
!Z)2(2f

a
f
b
)2(k2

a
#Z2

s
)~5(k2

b
#Z2

s
)~5 , (3.44)

where C
a

and f
j
, j"a, b are given by Eqs. (A.4) and (A.7), respectively. Again we recover, the

geometric and energetic symmetry properties of CD, as respectively given by the triple vectorial
product and the factor (k

a
!k

b
). The function F contains further dynamical information. Since

(k
a
!k

b
) and (kK

a
]kK

b
) ) kK are both antisymmetric with respect to exchange of the two electrons, we

deduce F(k
a
, k

b
)"F(k

b
, k

a
), for Eq. (3.35) must be satis"ed. Furthermore, upon inspection of

F(k
a
, k

b
) (Eq. (3.44)) we verify that F is positive de"nite for all combinations of k

a
and k

b
. This

means that, within the approximations (3.39) and (3.40), CD does not vanish except for the zero
points of (k

a
!k

b
)(kK

a
]kK

b
) ) kK . This conclusion is also valid for the normalised dichroism CD

n
, as

de"ned by Eq. (3.33), since F/R (R :"=(p`)#=(p~)) is also positive de"nite (R'0). These
statements concerning the CD

n
apply for all wave functions that contain the inter-electronic

interaction via a co-ordinate-independent multiplicative factor [44], since this factor will cancel
out when taking the ratio CD/R.

Therefore, we conclude, that a vanishing CD at situations other than those dictated by
(k

a
!k

b
)(kK

a
]kK

b
) ) kK are traced back to e!ects of the electron}electron interaction other than the

static screening of the residual-ion "eld.
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3.7. Dependence of the circular dichroism on the strength of the residual ion's xeld

As remarked previously the approximate forms (3.40) and (3.39) become more appropriate with
increasing nuclear charge Z. Therefore, it is worthwhile to study the CD using Eqs. (3.40) and (3.39)
for moderately large Z (we still neglect however the L )S interaction, i.e. Z should not be too large
for the L )S to become sizeable). Generally, with increasing Z the photodouble-ionisation cross-
section decreases rapidly; in contrast the CD

n
remains "nite. This follows from the expression for

CD
n
,

CD
n
"!

Z
F

(k
a
!k

b
)(kK

a
]kK

b
) ) kK , (3.45)

where F"R/F is given by Eq. (A.18). As R and F are positive-de"nite functions of k
a

and k
b
, we

conclude F(k
a
, k

b
)'0. For the case that the photon beam is perpendicular to the plane spanned

by kK
a

and kK
b
, the function F simpli"es to

F"

k2
b
#Z2

s
k2
a
#Z2

s

(k2
a
#Z2)#

k2
a
#Z2

s
k2
b
#Z2

s

(k2
b
#Z2)#2(k

a
k
b
#Z2) cos h

ab
. (3.46)

The behaviour of CD
n

as function of Z is pretty much dependent on the experimental situation.
For example, if we consider the CD

n
as function of h

ab
for energies of the electrons such that

k
a
<Z;k

b
, then the Z dependence of F can be neglected and the CD

n
increases with increasing

Z. For very asymmetric energy sharing, however, the functionF [Eq. (3.46)] becomes proportional
to Z2 for large nuclear charge. Therefore the CD

n
decreases with increasing Z. The latter behaviour

can be seen in Fig. 2 for Li`(1S%), Be2`(1S%) and B3`(1S%) as targets. From Fig. 2 it is also clear that
the CD

n
is less sensitive to changes in the ionisation dynamics than the cross-sections. Unfortu-

nately, there is as yet no experimental data for the CD
n

for a varying residual ion charge.

3.8. The photon-frequency dependence

The photon-frequency dependence of the CD
n

close to the double ionisation threshold
can be investigated within the Wannier}Peterkop}Rau (WPR) theory that has been discussed in
Section (3.3). As well known the gerade and the ungerade amplitudes a

'
and a

6
obey di!erent

threshold laws, namely

Da
'
D2JEn~2 ,

Da
6
D2JE3n~3@2 ,

where E"E
a
#E

b
is the total excess energy and n is the Wannier exponent [71] (its numerical

value is, e.g. n"1.127 for H~ and n"1.056 for He). For small E, the gerade amplitude
a
'

dominates over the ungerade amplitude a
6

within a small energy range of unknown extension.
The dichroism being proportional to the interference between a

'
and a

6
possesses the energy

dependence

CDJE2n~7@4 sin h
a
sin h

b
sinu . (3.47)
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Fig. 2. The one-photon double ionisation of Li`(1S%), Be2`(1S%), B3`(1S%). As sketched, the two electrons escape in the
plane of the drawing that is perpendicular to the photon beam. For a "xed relative angle between the electrons h

ab
, the

energy of one the electrons, say E
b
, is varied while the the excess energy E"E

a
#E

b
is "xed to be 14.5 eV

[E
a
"14.5!E

b
(eV)]. The photon energy is varied as to compensate for the di!erent double-ionisation potentials of the

di!erent targets. The "gures show:=(Li`,p`): thick solid curve,=(Li`,p~): thick dashed curve,=(Be2`,p`): solid thin
curve,=(Be2`,p~): dotted curve,=(B3`,p`): dashed thin curve, and=(B3`,p~): dash-dotted curve. Also shown is the
dichroism CD

n
for the case of Li` (solid curve), Be2` (dotted curve), and B3` (dash-dotted curve). The cross-section for

Be2` (B3`) has been multiplied by a factor of 2 (3). For the calculations we employed the analytical formulas, as given by
Eqs. (3.40) and (3.39).

A "nite dichroism close to threshold is not forbidden by this consideration but approaching
threshold we expect a decreasing dichroism as predicted by (3.47). The range of validity of this law
is closely related to that of the WPR theory. When compared with the measured total photo-
double-ionisation cross-sections [82] the WPR theory provides reliable predictions within 2 eV
above threshold. It should be stressed however, that the CD is essentially a di!erential quantity (it
vanishes when integrated over one of the electrons) whereas the WPR is designed for integrated
cross-sections. The predictions of the WPR theory for the frequency dependence of CD and of CD

n
(near threshold the behaviour of R(E) is determined by Da

'
D2) can now be compared with the
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analytical results of Section 3.6. To do this we note that the photon-frequency dependence of R
and CD

n
, as described by Eqs. (A.16) and (3.45), is more transparent in the parameteris-

ation k
a
"J2E sin a, k

b
"J2E cos a (E is the excess energy). Eq. (3.45) reads then, CD

n
"

ZJ2E(cos a!sin a)(kK
a
]kK

b
) ) kK /F, where

F"

2E cos2 a#Z2
s

2E sin2 a#Z2
s

(2E sin2 a#Z2)#
2E sin2 a#Z2

s
2E cos2 a#Z2

s

(2E cos2 a#Z2)

#2E(sin 2a#Z2) cos h
ab

.

SinceF"F/R and the function F(E), as given by Eq. (A.12), is positive de"nite it follows thatF(E)
is positive de"nite as well. At threshold (EP0) the CD

n
decreases as JE. For high photon

frequency (EPR) the CD
n
is proportional to 1/JE. Except for these two limits the CD

n
possesses

no additional zero points as function of E (this is due to F(E)'0, ∀E and CD
n
JJE/F). These

conclusions are applicable when employing the approximate wave functions (3.40) and (3.39). Any
additional zero points in the CD

n
as function of E has to be assigned to the electron}electron

interaction in the initial and/or "nal state, as discussed later on.

3.9. Calculational schemes of the polarised one-photon two-electron transitions

In Section 3.6, we were able to derive analytical results for the dichroism and the cross-sections.
From the structure of the wave functions (3.40) it is clear however that the double-ionisation
dynamics is probably oversimpli"ed, at least for cases with strong electronic correlation. More
accurate results are provided by including the electron}electron interaction either analytically, as
in the three-body Coulomb wave model (3C), or full numerically, as in the convergent close
coupling method (CCC). It should be noted here that there is a considerable body of theoretical
treatment of the one-photon double ionisation by linear polarised photon which have been
summarised recently in Ref. [54]. Here we focus on those models that have been employed for the
evaluation of the dichroic e!ects in double photoionisation.

In the 3C treatment Eq. (3.40) is extended to include the "nal-state electron}electron interaction
in the form (cf. Refs. [76}79])

W
3C

"N
ab

W
2c 1

F
1
[ib

ab
, 1,!i(k

ab
r
ab
#k

ab
) r

ab
)] , (3.48)

where r
ab

:"r
a
!r

b
and k

ab
is its conjugate momentum, b

ab
:"1/2k

ab
and N

ab
"

exp(!pb
ab

/2)C(1!ib
ab

). In what follows we improve on the description of the initial state by
employing a correlated Hylleraas initial state

U
3h
"N

h
[exp(!a

h1
r
a
!a

h2
r
b
)#exp(!a

h1
r
b
!a

h2
r
a
)]exp(br

ab
) . (3.49)

The parameters a
h1@h2

, b are variationally determined by minimising the binding energy.
It is out of the scope of this work to go into the very details of the approximate wave functions

(3.48) and (3.49), the interested reader can "nd comprehensive details in Refs. [76}79]. As shown in
Ref. [76], when expressed in appropriate co-ordinates, the three-body Hamiltonian (two con-
tinuum electrons in the "eld of a residual ion) can be written as a sum of three two-body
Hamiltonians that commute with each other. This means that the three-body system is considered
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Fig. 3. The same geometry as in Fig. 2 (schematically shown by the drawing), however, the wave function (3.48) has been
employed for the "nal state. The theoretical cross-sections at h

ab
"1503 (853) have been scaled down by a factor of 2 (3). The

target is a helium atom in its ground state. The total energy of the pair is 14.5 eV. Experimental data are due to Ref. [42].

as a sum of three two-body systems. Thus, in the appropriate non-orthogonal six-dimensional
space, the coupling between these individual subsystems is not accounted for by (3.48). This
coupling can be incorporated approximately into the theory, but on the considerable expense of
introducing a radial dependence of the two-body interaction strength Ref. [76]. This makes the
numerical implementation quite involved. In addition, it has not yet been possible to "nd a method
to normalise the coupled three-body wave function in a mathematically sound way. Nevertheless,
there are already some numerical implementations of this radially coupled three-body wave
function for the double photoionisation, but in view of the above statements concerning the
normalisation, these numerical methods and their results are not conceivably conclusive. Nonethe-
less, we stress here that analytical methods can only be approximate, for the many-problem is not
separable. Their role is to serve as a tool to understand the underlying physics, rather than to
compete in accuracy with full numerical methods, such as those outlined below.

To get an insight into the e!ect of the electronic correlation on the chiral electron-pair emission
we consider in Fig. 3 the same case studied in Fig. 2 using the wave functions (3.48) and (3.49).
Comparing Figs. 2 and 3 we observe that the e!ect of the electron}electron interaction is less
pronounced when the two electrons escape in almost opposite directions (h

ab
"1503). This is
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understandable from the properties of the electron}electron repulsion which is strongest when the
two electrons escape close to each other. When h

ab
becomes smaller the in#uence of electronic

correlation becomes prevalent.
Probably the most notable feature in Fig. 3, as compared to Fig. 2 and to our "nding of

Section 3.1, is that the CD
n

becomes quite small at h
ab
"1253 and changes sign when varying the

mutual angle further to h
ab
"853. This behaviour, which is con"rmed by the experimental "nding,

is in so far surprising as it cannot be explained by the analytical results deduced from the
approximation (3.40) and (3.39) nor by the general tensorial analysis of Section 3.1. Since this
behaviour of the CD

n
occurs only when correlated states are used, we assign it to the elec-

tron}electron coupling. However, the underlying physics for this new feature is not clear, i.e. it is
still an open question why the phase of the correlated "nal state wave function behaves such that
the phase di!erence between ¹

x
and ¹

y
vanishes.

For the explanation of the evolution of the size of the CD
n

as revealed by Fig. 3 we refer to
Ref. [44].

In Figs. 2 and 3 we analysed the energy-sharing behaviour of the CD
n
. The angular correlation of

the CD
n

is investigated in Fig. 4. Since the behaviour of the double ionisation cross-section by
linearly polarised photon is well investigated, both theoretically and experimentally, it is appropri-
ate to use Eq. (3.32) to understand the behaviour of the PDI cross-section with polarised photons
in light of the behaviour of ¹

x
and ¹

y
. An example is shown in Fig. 4 where calculations and

experiment for the PDI cross-sections derived from ¹
x

and ¹
y

are shown. The shape of the
experimental "ndings for D¹

x
D2 and D¹

y
D2, as shown in Fig. 4(a) is reasonably reproduced by

the theory, however, considerable deviations between theory and experiment are observed as far as
the magnitude of the cross-sections is concerned. At u

a
"0,p, 2p the amplitude ¹

y
possesses a zero

point since in this case the two photoelectrons escape perpendicular to the linear polarisation
vector [80]. We note here, that in general, a shape agreement between theory and experiment, as far
as D¹

x
D2 and D¹

y
D2 are concerned, does not mean the same kind of agreement for the sum R of D¹

x
D2

and D¹
y
D2 (unpolarised cross-section) [Fig. 4(c)], because the shape of R depends on the relative

ratio between D¹
x
D2 and D¹

y
D2.

Comparing Figs. 4(a), (b) [D¹
x@y

D2] and (c) (R) it is evident that the minimum in R at u
a
"p is due

to the zero point in ¹
y

at the same position whereas the two peaks originate from the correspond-
ing peaks in D¹

y
D2. In fact, the peaks in R at u

a
+1253, 2353 appear as a result of the dip in R at

u
a
"p.
As it is clear from Eq. (3.32), the di!erence between R, as depicted in Fig. 4(c), and=(pB) depend

very much on whether ¹
x

and ¹
y

interfere constructively or destructively. This interference is
controlled by the phase di!erence /

yx
:"/

y
!/

x
. As seen in Fig. 4(d), /

yx
remains almost

unchanged when using di!erent initial-state descriptions, in contrast to R [cf. Fig. 4(c)]. From
Fig. 4(d) we also notice that when both electrons emerge approximately in the same direction (i.e. in
the region 2603(u

a
(1003), the phase di!erence /

yx
is relatively small and smooth. As a result,

the cross-sections=(pB) [see Fig. 4(e)] are basically dictated by R (which is helicity independent)
and consequently do not di!er much from each other. On the other hand, when the photoelectrons
escape almost opposite to each other (u

a
+1803) we observe a considerable phase di!erence /

yx
.

As obvious from the sign of /
yx

this results in a constructive (destructive) interference of ¹
x

and
¹

y
for u

a
(1803 (u

a
'1800) leading to the shape of =(p`), as observed in Fig. 4(e). Same

consideration applies to =(p~). Therefore, one can conclude that the structure of the angular
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Fig. 4. (a) The cross-sections for the double ionisation of He(1S%) with linear polarised photon. Two cases are depicted
where the photon's polarisation vector is "xed along the x- (solid line, labeled e

x
) or the y-direction (dotted curve, labelled

e
y
). The excess energy is 20 eV. Both ejected electrons are detected in the x}y plane. One fast electron (electron b with

17.5 eV) is detected along the x-direction whereas the angular distribution of the slower one (electron a) is scanned with
u
a
is being its (positive) azimuth angle (with respect to x-axis). Experimental data are provided by BraK uning et al. [83]. In

the calculations, the "nite energy resolution of $1 eV has not been taken into account. The initial state has been
modelled by three-parameters Hylleraas wave function [44,84] whereas the "nal state is taken as a 3C wave function (see
text). Velocity form has been employed. (b) Same geometry and notation as in (a) but the initial state has been modelled
by a wave function that partially satis"es the two-body cusp conditions as proposed in Ref. [85]. To allow for shape
comparison the solid curves in (a) and (b) have been multiplied by a factor of 2 whereas the dotted curve by a factor of 4.
The experimental data are on absolute scale. (c) The sum R (R"=(e

x
)#=(e

y
)"=(p~)#=(p`)) for the detection

geometry as in (a). The solid curve has been obtained using the same theoretical model as in (a) whereas the dotted curve
derives from the theory of (b). The theoretical results have been multiplied by a factor of 4. The thick dashed curve is
the (absolute) experimental R as deduced from (a). (d) The di!erence /

yx
"/

y
!/

x
of the phases /

y
and /

x
of the

amplitudes ¹
y

and ¹
x

as used to calculate, respectively,=(e
y
) and=(e

x
). The solid (dashed) curve corresponds to the

case of (a) [(b)]. (e) The same arrangement of the electrons' detectors, however, the photon is circularly polarised with its
wave vector pointing along the z direction. Cross-sections for positive (solid line, labelled p`) and negative (dotted line,
labelled p~) helicity photons are depicted. The calculations are done as in (a) except for the dashed curve where p` has
been evaluated using for the initial-state description the wave function proposed in Ref. [85] [same as in (b)]. (f ) The
circular dichroism CD

n
as de"ned by Eq. (3.7) for the case of (e). The solid curve is the CD

n
deduced from the solid and

the dotted curves in (e) whereas the dashed curve corresponds to CD
n

as predicted by the calculation labelled by the
dashed curve in (e). The experimental data are due to Ref. [43].
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Fig. 4. Continued.

distribution of=(pB) (two peaks and one minimum) has its origin in the shape of R, superimposed
on that is the interference pattern of ¹

x
and ¹

y
. In this sense the PDI cross-sections is a more

sensitive indicator of the ionisation dynamics than R only or CD
n

only (of course R and CD
n

are
just an exact parameterisation of the cross-sections). In Fig. 4(f ) the CD

n
is shown along with the

experimental data. As expected, the CD
n

vanishes at u
a
"03, 1803, 3603. On the other hand, an

additional structure appears around u
a
"903, 2703 which is obviously related to the phase

properties (cf. Fig. 4(d)) and cannot be explained by geometrical arguments. In fact, this dynamical
minimum in the CD

n
develops to a zero point at certain experimental situation [37].

Fig. 5 demonstrates the element dependence of the PDI cross-section with circularly polarised
light as well as the e!ect of the initial state symmetry. As seen from Figs. 5(a), (b) and (d), the CD

n
and the cross-sections depend in an unrelated way on the electronic correlation. To specify
completely the PDI process a measurement of both CD

n
and R are necessary, or equivalenty

=(p`) and =(p~). The predictions of the wave function (3.40) for the cross-sections are far o!
those of the correlated one (3.48). In contrast, the predictions for CD

n
, as shown in Fig. 5(f ), seem to

resemble roughly those calculated using Eq. (3.48) [Fig. 5(d)], as far as the shape is concerned.
The PDI cross-section for the triplet state of helium [Fig. 5(c)] is completely di!erent from that

for the singlet state [Fig. 5(a)]. A closer look at D¹
x
D and D¹

y
D however, reveals that D¹

x
D and D¹

y
D

obeys now di!erent selection rules and therefore the PDI cross-section for the triplet state shows
only one single peak (we recall that the minimum in the PDI cross-section for the singlet state is
interpreted as a result of a zero point in D¹

y
D, cf. Fig. 4). On the other hand, the CD in case of triplet

has an inverted sign and is much smaller as compared to the case of singlet. The results for CD
n

(shown in Fig. 5(f )) indicate that the dichroism for the triplet state is large when the cross-section is
small and hence the enhanced value of the CD

n
in comparison with the CD

n
for the singlet state.

In Fig. 6 we show the angular correlation pattern of the cross-section and of the dichroism when
one of angle h

"
between the beam direction and the plane spanned by kK

a
and kK

b
is varied while

kK
a
okK

b
. As it is clear from Fig. 6 the magnitude of the cross-section does not vary much when h

"
is

changed, while CD
n

follows the geometric propensity rule of the dichroism.
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Fig. 5. The same geometry as in Fig. 4(e), however, the energy of the electron "xed along the x-direction is lowered to
1 eV while the energy of the other electron (with variable angle u

a
) is chosen as 12 eV. (a) Shows the cross-section as

function of u
a
for He(1S%) whereas in (b) H~(1S%) is used as a target. In (c) we employ the excited state of helium He(3S) as

an initial state. The photon energy is adjusted as to compensate for the di!erent ionisation potentials of the various
targets while keeping "xed the excess energy of the electron pair at 13 eV. In (d) we show CD

n
for He(1S%) (solid curve),

H~(1S%) (dashed curve) and He(3S) (dotted curve). For the calculations shown in (a)}(d) the "nal state given by Eq. (3.48)
has been employed and a three-parameter Hylleraas wave function for the ground state of the target has been used. In (e)
and (f ) we illustrate the e!ect of "nal state interaction by calculating the cross-section (e) and CD

n
for the situation

corresponding to (a) but using the "nal-state wave function (3.40) due to which the electron}electron "nal-state
interactions are neglected.

3.10. The convergent close coupling technique

A further powerful numerical method for the calculation of chiral photoelectron pair emission is
the convergent close coupling technique (CCC). As in the WPR method the absorption of a circular-
ly polarised photon, say by a 1S%7%/ state, leads to a "nal state with speci"c magnetic quantum
number M. The fully di!erential cross-section of the PDI process is written as [46,47]

=(M, k
a
, k

b
)"cK +

la lb

(!i)la`lbBla lb
1M

(kK
a
, kK

b
)e**dla (Ea )`dlb (Eb )+D

la lb
(E

a
, E

b
)K
2

, (3.50)
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Fig. 6. The variation of the cross-section (a) and CD
n
(b) as function of the polar angle h

a
of one of the emitted electrons

while the energy and angles of the other electron are "xed. The energies and the target as well as the employed theoretical
models are the same as in Fig. 5(a) where h

a
is varied in the x}z plane, i.e. we choose u

a
"903 and u

b
"0 (see also the

schematic drawing of the process).

where c is a constant which depends on the normalisation of the continuum wave functions and
the gauge of the electromagnetic operator. The index M indicates the polarisation of light and is
set to 0 for linearly polarised light and to $1 for circularly polarised light depending on the
helicity, i.e. =(M"$1, k

a
, k

b
),=(pB, k

a
, k

b
). The `quantisation axisa (z) is chosen along the

polarisation axis for M"0 whereas for M"$1 it is directed along the photon beam
propagation.

Expression (3.50) is compatible with the general formalism of Section 3.1. This can be easily seen
in the case of a 1S two-electron initial state in which case Eq. (3.50) can be written as

=(M, k
a
, k

b
)"C +

L LaLb

S¸0 D 1M, 1!MTBLaLb
L0

(kK
a
, kK

b
)c

LaLb
(E

a
, E

b
) . (3.51)

The dynamical function c depends on the energies, the angular momentum coe$cients, phases and
the reduced matrix elements, but has no M-dependence. The dependence on M is included in the
Clebsch}Gordan coe$cient (the summations over ¸

a
, ¸

b
and ¸"0, 1, 2 are independent of M).

When calculating the CD, only the term ¸"1 and ¸
a
"¸

b
terms survive in accord with the

derivation of Section 3.1.
For the calculation of the reduced dipole matrix element D

l1 l2
(E

1
,E

2
) one expands the "nal

two-electron continuum state using N square-integrable (¸2) states, with the double ionisation
processes being identi"ed with excitation of the positive-energy pseudostates. Technical details can
be found in Refs. [46,47]. Basically, the method treats the double ionisation as a photoionisation
with a true continuum electron of energy E

a
and orbital angular momentum l

a
accompanied with

excitation of the ionic electron to a state denoted by n
b
l
b
with energy E

b
. Thus, in a sense, the CCC

method employs boundary conditions corresponding to a situation where the true continuum
electron always being shielded by the `exciteda one, irrespective of the energies E

a
and E

b
. This

seems reasonable for an asymmetric energy sharing E
a
<E

b
but leads to some problems when

E
b
<E

a
. As discussed in Ref. [86], one can design a strategy to control these problems. There are

now a number of application of the CCC method to the case of PDI with linear polarised light. In
the context of this work we brie#y discuss recent CCC result for the PDI with circular polarised
light [46,47].
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Fig. 7. The angular correlation of the double photoionisation cross-section in the equal energy-sharing mode. Both
electrons escape with equal energies E

a
"E

b
"4.5 eV. The Stokes parameters are for inset (a) S

1
"#0.20, S

3
"!0.95

whereas for inset (b) S
1
"!0.20, S

3
"#0.95 (cf. Eqs. (3.36) and (3.52)). The emission direction of one electron is "xed

at the position labelled by the arrow whereas the angle of emission of the second electron is varied in the plane of the
drawing. The experiment (full dots) is shown along with the results of the "tting formula according to Refs. [48,49]. The
"gures are due to Ref. [50].

Fig. 8. The same as in Fig. 7, however the electron "xed at the position indicated by the arrow escapes with 1 eV energy.
The other electron whose emission angle is scanned possesses an energy of 8 eV. According to Eqs. (3.36) and (3.52), the
Stokes parameters have to be determined. These are S

1
"!0.2, S

3
"0.95 for the case shown in (a) whereas for (b)

S
1
"!0.20, S

3
"#0.95. Inset (c) shows the sum of the cross-sections depicted in (a) and (b) (cf. Eqs. (3.36) and (3.52)).

Experimental data (full dots) are shown along with the result of the "tting procedure of Refs. [48,49] (solid curve) whereas
the dashed curves are the results of the CCC theory [47,46,88]. Both the experiment and theory are arbitrarily scaled for
comparison. The results are due to Ref. [50].

Before we discuss the CCC data as compared to recent experiments [46,47] we remark that often
the experimental situation is such, the incident light is only partially polarised. For this case
a recipe has been suggested in Ref. [87] which express the measured cross-section=(X

a
, X

b
, E

b
) in

terms of the linear (Eq. (3.37)) and the circular dichroism (Eq. (3.33)) LD
n

and CD
n
, respectively as

=(X
a
, X

b
, E

b
)"

R
c

2
(1#S

1
LD

n
!S

3
CD

n
) , (3.52)

where the unpolarised cross-section R
c

is given by R
c
"CR (cf. Eqs. (3.36) and (3.1)) and S

1
and

S
3

are the Stokes parameters describing the degree of linear and circular polarisation, respectively.
From Eq. (3.52) it is clear that for equal energy sharing of the two continuum electrons, the CD

n
vanishes and the LD

n
is directly accessible. This situation is illustrated in Fig. 7. In contrast, for the
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Fig. 9. The same experimental arrangement as in Fig. 8 with the same labelling of the curves and symbols. In (a) [(b)] is
depicted the PDI cross-section following the absorption of right (left)-hand circularly polarised photon. The experimental
data have been obtained from Fig. 8 by subtracting the S

1
part from the cross-sections. Thus the Stokes parameters in (a)

are S
1
"0, S

3
"0.95 whereas in (b) they are S

1
"0, S

3
"!0.95. Results are courtesy of Ref. [50].

case of unequal energy sharing both LD
n

and CD
n

are "nite with a relative strength depending on
the dynamics and, of course, on S

1
and S

2
, as shown in Fig. 8. As demonstrated in Refs. [50,88], for

a suitable choice of the Stokes parameters S
1

and S
3

one can subtract the part of the coincidence
signal that is depending on S

1
and extract thus cross-sections solely due to the circular polarised

photon and measure thus the circular dichroism, as illustrated in Fig. 9.

3.11. Circular dichroism in the Auger-electron photoelectron spectroscopy

Soon after the prediction of the circular dichroism in one-step double photoionisation it was
pointed out that the same e!ect should be observable in photon-induced Auger processes
[38,51,52]. In this part of the paper we give a brief account of the theory of circular dichroism in
photon-induced Auger processes.

The exposure of an atom to circularly polarised light may result in an inner shell ionisation.
The inner shell hole state may decay via emission of an Auger electron into a "nal stable ion.
The two escaping electrons, the photoelectron and the Auger electron can then be detected in
coincidence.

The emission intensity I of the Auger electrons escaping with a momentum p
a

is [17,19,89]

I(p
a
)J +

M&MM{

SJ
&
M

&
p
a
D<DJMTo(M,M@)SJM@D<DJ

&
M

&
p
a
T , (3.53)

where J and M are angular momentum and the magnetic quantum number of the innershell hole
state whereas J

&
,M

&
are the corresponding quantum numbers for the "nal ion state. Here we

assume that the spin states of the Auger electron are not resolved. In addition, we sum over
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M
&
since the magnetic sublevels of the "nal ion are normally not detected. In Eq. (3.53) o(M,M@) is

the density matrix of the inner shell hole state. The structure of o(M,M@) depends sensitively on the
creation process of the hole state. In the present case this mechanism is the photoionisation.
Therefore, the density matrix is basically given by the photoionisation probability,

o(M,M@)"
1

2J
0
#1

+M
0
SJMp

1
De( ) rDJ

0
M

0
TSJ

0
M

0
De( H ) rDJMp

1
T , (3.54)

where J
0
M

0
are the angular momentum quantum numbers of the initial state, e( is the light

polarisation unit vector, r is the dipole operator in length form, and p
1

is the momentum of the
emitted photoelectron. A statistical average over the initial M

0
-distributions has been performed

as the target is not oriented. Using the re-coupling formula given by Eq. (3.6) we deduce for the
di!erence D

a
of cross-sections between right- and left-hand circular polarisation of the incident

photon the expression

D
a
" +

M&MM{

SJ
&
M

&
p
a
D<DJMTSJMp

1
Dr]r@DJM@p

1
TSJM@D<DJ

&
M

&
p
a
T . (3.55)

Here we de"ned r@"Pr with P"(1/(2J
0
#1))+

M0
DJ

0
M

0
TSJ

0
M

0
D. It is essential that the vector

product of the photoionisation amplitudes is not equal to zero. More detailed analysis of the
features of the dichroism are given in Ref. [38].

At the end of this section we remark that there is a number of further promising theoretical and
experimental techniques currently under development for the investigation of dichroic e!ects in
double ionisation with polarised photons. Here we gave a compact account of the ideas, mostly
concerned with two-electron atoms. However, the phenomenon of dichroism is far more reaching
and should show up in a general electronic system. The behaviour of the dichroism in a correlated
many-electron compounds is the subject of a future research.

4. Chiral electron pair emission from laser-pumped atoms

In Section 3, we investigated the chirality transfer from the radiation "eld to a correlated electron
pair. The two-electron initial state prior to the photon absorption was randomly oriented. In this
section we consider a situation in which the electron pair in the initial state possesses already an
internal orientation. We study then the role of this orientation when the electron pair is excited into
a continuum state. Experimentally, this reaction is realised by pumping a one-active electron atom,
say an alkali atom, with circular polarised light to achieve a certain population of the magnetic
sublevels M of the total angular momentum J. This population can be generally described by
a density matrix oJ

MM
. The prepared atomic target with well-de"ned sense of rotation of the excited

electron is then ionised by a low-energy electron beam (the incident energy is typically a few times
the ionisation potential of the target). The remaining residual ion is isotropic. Therefore, the sense
of rotation that is present in the system before the ionisation event, is transferred to the two
correlated continuum electrons.

In this section we shed light on the questions: (1) In which way the sense of orientation of the
electronic motion modi"es the ionisation dynamics, if at all. (2) What are the common features and
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the di!erences between this case and the situation of chiral electron pairs from PDI. To this end we
start by analysing the process using a formal tensorial analysis and exploring the symmetry
properties that has to be imposed on the electron-impact ionisation process due to initial orbital
orientation of the atomic electrons. Subsequently, we present a simple dynamical model within
which closed analytic formula can be obtained. Finally, we discuss more elaborate scattering
dynamic approaches and compare with experimental "ndings.

4.1. Formal development

The incoming electron beam with well-de"ned momentum k
0

intersects the oriented and/or
aligned atomic beam in the interaction region. Thereafter, two interacting continuum electrons
leave simultaneously the interaction region. For the analysis of such an experiment we employ the
density-matrix methodology that has been developed for the description of state-selective elastic
and inelastic scattering experiments [60,91}93]. The atomic and electron beams are characterised
by density operators whose matrix representations re#ect the statistical mixture of pure states of
the respective beam. The initial state of the system, consisting of the atom and the incoming
electron beam, is described by a density operator o*/ which is a direct product of the electron-beam
density operators o% and the density operator o of the laser-pumped atom. This is because the
electron and atomic beams are initially prepared far from the interaction region, and as such are
not correlated (long before the collision) [91] so that

o*/"o%]o . (4.1)

For the sake of clarity we study a situation in which the initial electron beam is unpolarised. In this
case, the reduced density matrix of the electron beam is simply the unit matrix [60] with the
normalisation coe$cient re#ecting the dimension of the electron spin-space

o*/"
1
2

+
M,M{l0

Dl
0
, J, MToJ

M,M{
Sl

0
,J, M@D . (4.2)

Usually, the atoms are laser-pumped into a speci"c hyper"ne state DF,M
F
T rather then into a total

angular momentum state DJ,MT. However, as proposed by Percival and Seaton [94], the non-zero
nuclear spin has no dynamical e!ect. It enters only through re-coupling coe$cients that are
dropped from relation (4.2). Thus, it su$ces to consider the atomic beam prepared in the quantum
states DJ,MT. The quantum number l

0
in Eq. (4.2) labels the electron spin projections.

The atomic beam is conveniently described in the photon frame where the quantisation axis e(
z
is

parallel to the beam's propagation direction in the case of a circularly polarised light and to the
direction of the electric "eld in the case of a linearly polarised light [95]. In the photon frame the
density matrix of the excited atomic state and of the ground state becomes diagonal.

In general, the angle- and energy-resolved cross-section=M (X
a
,X

b
,E

b
) for the simultaneous ejection

of two electrons from an atomic target by an unpolarised electron beam is calculated as [90,97]

=M (X
a
, X

b
, E

b
)"i +

l0 ,M
M&lalb

M(k
a
, l

a
, k

b
, l

b
,M

&
; J¸M, k

0
)oJ

MM
Ms(k

a
, l

a
, k

b
, l

b
, M

&
; J¸M, k

0
) .

(4.3)
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Here M is the matrix element of the transition operator ¹ and is given by

M"Sk
a
l
a
k
b
l
b
U*0/

J&L&M&
D¹DU!50.

JLM
k
0
l
0
T ,

where DU!50.
JLM

T is the initial bound state of the atom and DU*0/
J&L&M&

T is the state of the residual ion
formed upon the ionisation event. Eq. (4.3) assumes no resolution of the spin projections l

a
and

l
b

of the two outgoing electrons. The kinematical factor i in Eq. (4.3) is given by

i"(2p)4
k
&
k
4

k
0

. (4.4)

For a systematic analysis of the process it is useful to separate properties that are related to the
initial state preparation from those concerning the collision dynamics. This can be conveniently
achieved when the density matrix oJ

MM
is expressed in terms of its state multipoles o

KQ
, i.e. in terms

of statistical tensor components [60]

oJ
MM

"+
K

(!1)K~J~MSJ!MJMDK0To
KQ/0

, (4.5)

where K and Q in relation (4.5) stand for, respectively, the rank of the statistical tensor and its
projection along the quantisation axis. As seen from relation (4.5) only the Q"0 components of
the state multipoles contributes to expansion (4.5). This is a result of the density matrix being
diagonal in the photon frame (in which we are operating). Using relations (4.3) and (4.5) the
cross-sections can be expressed in terms of irreducible tensor components as [99]

=M (X
a
, X

b
, E

b
)"

2J
+

K/0

o
K0

K(K)
0

. (4.6)

This expression has the desirable feature that the geometry of the experiment, as described by the
state multipoles, is completely disentangled from the reaction dynamics (contained in the tensorial
parameters K(K)

0
). The components K(K)

0
read

K(K)
0

"C +
l0 ,M
M&lalb

(!)J`M`KSJ!MJMDK0TMMs . (4.7)

That the parameters K(K)
0

can in fact be regarded as the components of a tensor of rank K can be
seen as follows: The M dependence of the matrix element M(M) is solely due to the dependence on
the magnetic sublevels of the initial state which is an eigenstate of an angular momentum.
Therefore, M(M) may be considered as the Mth component of a spherical tensor. Further, we can
write the complex conjugate in the form (M(M))H"(!)p~MW(!M). This relation is a de"nition
for the tensor W, and resembles formally the de"nition of the adjoint of a tensor operator where
the phase p is arbitrary [69] except that p!M must be an integer.

The association of the parameters K(K)
0

with spherical tensors has important consequences for the
symmetry properties with respect to rotations: The quantity K(K)

0
is scalar under overall rotations

whereas K(K/0$$)
0

is an orientation and hence changes sign upon re#ection of the quantisation axis.
The parameters K(K/%7%/)

0
are alignment parameters. A further important property of the classi"ca-

tion (4.6) is the "nite number of contributing K(K)'s. This number is given by 2J#1 where J is the
total angular momentum of the target atom, e.g. for J"0 we get neither an orientation nor an
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alignment, J"1/2 allows for an orientation but not for an alignment, and for J51 we expect in
general both an orientation and an alignment. The scalar, for instance, corresponding to K"0 is
nothing else but the cross-section averaged over the statistical M-population

K(0)
0

"(2J#1)~1@2C +
l0 ,M
M&lalb

MMs (4.8)

and

o
00

"(2J#1)~1@2 . (4.9)

For K"1 one obtains the vectorial orientation

K(1)
0

"S
3

J(J#1)(2J#1)
C +

l0 ,M
M&lalb

MMMs

and the state multipole

o
10

"S
3

J(J#1)(2J#1)
+
M

Mo(J)
MM

.

The simplest application of the above formalism is the low-energy electron-pair ejection from
a light target atom with one active electron, such as sodium. Relativistic interactions that may alter
the spin projections of the continuum electrons without conservation of the total spin of the system
are then neglected. The spatial and the spin part of the ¹-matrix elements can be decoupled. In the
case of a sodium target Eq. (4.6) can be expanded as [58,99]

=M (X
a
, X

b
, E

b
)"1

3
K(0)

0
# 1J2

(o(1)
11

!o(1)
~1~1

)K(1)
0
# 1J6

(1!3o(1)
00

)K(2)
0

. (4.10)

As mentioned above, the tensorial components along the quantisation axis of the target are
functions of the state-resolved cross-sections, p

L,mL
, e.g.

K(0)
0

"

i

J3
(p

1,1
#p

1,0
#p

1,~1
) , (4.11)

K(1)
0

"

i

J2
(p

1,1
!p

1,~1
) , (4.12)

K(2)
0

"

i

J6
(p

1,1
!2p

1,0
#p

1,~1
) . (4.13)

The cross-sections, p
L,mL

, are deduced from the matrix element of the singlet ¹(S"0) and the
triplet ¹(S"1) transition operator where S is the total spin of the electron pair:

p
L,ml

"i+
S

1
2S#1

DSk
a
l
a
k
b
l
b
U*0/

LiMi
D¹SDU!50.

LM
k
0
l
0
TD2 . (4.14)

These relations render possible the calculations of the state-selective cross-sections for arbitrary
orientation of the momentum transfer vector, q"k

0
!k

a
with respect to the quantisation axis,

e(
z

[102].
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4.2. Symmetry relations of the orientational dichroism

As we discussed above the parameter K(1)
0

quanti"es the sensitivity of the cross-section to the
inversion of the helicity of the exciting laser. Therefore, we term it orientational dichroism. Here we
consider some exact symmetry properties that can be used as a benchmark for experimental and
theoretical studies. To do this we omit from the discussion the internal structure of the residual ion.

The initial (Uk
0 ,nLM

(r
a
, r

b
)) and the "nal states (W~k

a ,kb
(r
a
, r

b
)) are solutions of the same six-

dimensional SchroK dinger equation, however with di!erent boundary conditions (an incoming free
electron and an oriented electron bound to an ion in case of DU

*
T and two interacting electrons in

the "eld of a positive ion in case of DW~k
a ,kb

T). The SchroK dinger equation is a second-order di!erential
equation in the coordinate space that treats the two electrons symmetrically. Besides, the
(Coulomb) potentials of concern here are exclusively scalar. Therefore, we deduce

W~k
a ,kb

(r
a
, r

b
)"W~k

b ,ka
(r
b
, r

a
) ,

W~
~k

a ,~k
b
(!r

a
,!r

b
)"W~k

a ,kb
(r
a
, r

b
) . (4.15)

Same relations as (4.15) applies to Uk
0 ,nLM

(r
a
, r

b
). Therefore, we conclude for the transition matrix

elements (the perturbation operators are scalar operators)

M(M, k
a
, k

b
, k

0
)"M(M, k

b
, k

a
, k

0
) , (4.16)

M(!M,!k
a
,!k

b
,!k

0
)"M(M, k

b
, k

a
, k

0
) . (4.17)

Furthermore, the laser-pumped initial state possesses a cylindrical symmetry around the quan-
tisation axis. A re#ection at the (z}x)-plane should not modify the initial state. Hence, the
relation applies

M(!M, k
a
, k

b
, k

0
)"M(M, k@

b
, k@

a
, k@

0
) , (4.18)

where k@
0
, k@

b
and k@

a
are the momenta of the incoming and two outgoing electrons being re#ected at

the (z!x)-plane. The relation Eq. (4.18) is of course only valid if the prepared electronic state of the
atom is a pure state with a cylindrical symmetry around the quantisation axis.

Eq. (4.18) requires a vanishing K(1)
0

when k@
0
, k@

b
, k@

a
and e(

z
are in the same plane, for we can always

choose the x-axis to lay in this same plane and therefore we obtain k@
0
"k

0
, k@

b
"k

b
, k@

a
"k

a
.

Moreover, in certain circumstances symmetry properties of the tensorial parameters could be
inferred from relation (4.18). For example, we choose k

0
, k

a
to lie in the (z}x)-plane and consider the

K(K)
0

as function of the azimuthal angle u
b

associated with k
b

(the polar angle and the energy of
electron `ba h

b
and E

b
are "xed). Obviously, Eq. (4.18) requires M(!M,u

b
)"M(M, 2p!u

b
), i.e.

K(1)
0

(u
b
)"!K(1)

0
(2p!u

b
) which means that K(1)

0
(u

b
) is an odd function with respect to u

b
. In

addition, the following relations for K(0)
0

(u
b
) are easily inferred

K(0)
0

(u
b
)"

C

J3

1
+

m/~1

DM(m)(u
b
)D2

"

C

J3

1
+

m/~1

DM(~m)(2p!u
b
)D2"K(0)

0
(2p!u

b
) . (4.19)
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A similar relation holds for K(2)
0

(u
b
) as well. These transformational symmetry properties of

K(K)
0

(u
b
), K"0, 1, 2 are independent of the employed approximations for the scattering dynamics.

However, the magnitude and shape of K(K)
0

, K"1, 2, 3 is largely a!ected by the description of the
collision dynamics [99,102].

4.3. Analytical results

To get some insight into the general properties of the orientational dichroism it is instructive to
consider dynamical models for which the dichroism can be evaluated analytically. The simplest
theoretic approach for which K(1)

0
is "nite and can be deduced analytically is the "rst Born

approximation (FBA) for the ionisation of an alkali atom. The FBA performs reasonably well for
fast collisions accompanied by small values of momentum transfer q"k

0
!k

a
[96]. Within the

FBA one of the escaping electrons (electron `aa in our notation) propagates freely whereas the slow
electron is assumed to be subject to the "eld of the residual ion. The "nal state wave function is
obtained from Eq. (3.40) upon the replacement b

a
,0. Within the FBA the transition matrix

elements are evaluated as

M(m)
FBA

"

1
2p2q2

Stk
b
(r)Dexp(iq ) r)D/

nlm
(r)T , (4.20)

where tk
b
(r) is a one-electron continuum wave function of the alkali atom which is orthogonal

to the bound state /
nlm

(r) of the valence electron. Here r is the position of the bound electron
with respect to the nucleus. To keep the number of the tensorial parameters small we consider
a p state for which K"0, 1, 2. The bound p-state wave function can be written in the form
u
n1m

(r)"R
np

(r)Y
1m

(r) with Y
lm

(r)"J4p/(2l#1)rl>
lm

(r( ). Here >
lm

is being a standard spherical
harmonic. Expressing the scalar product q ) r in terms of spherical vector components

q ) r"+
m

(!)mq
m
r
~m

we rewrite the FBA-transition matrix elements as

M(m)
FBA

"!i(!)m
1

2p2q2

R
Rq

~m

Stk
b
(r)De*q > rDR

np
(r)T . (4.21)

Because the matrix element in Eq. (4.21) depends only on q2 and k
b
) q the Born transition matrix

element has the structure

M(m)
FBA

"(aq#bk
b
)
m

, (4.22)

where the index m refers to a spherical vector component, and the dynamical parameters a and
b are independent of m. Thus, within the FBA the quantities K(K)

0
evaluate to

K(0)
0

"

C

J3
[DaD2q2#DbD2k2

b
#2Re(abH)q ) k

b
] , (4.23)
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K(1)
0

"

C

J2
Im(abH)(q]k

b
) ) e(

z
, (4.24)

K(2)
0

"

C

J6
[DaD2(q2!3q2

0
)#DbD2(k2

b
!3k2

b0
)#2Re(abH)(q ) k

b
!3q

0
k
b0

)] , (4.25)

where k
b0
"k

b
) e(

z
. The tensor components (4.23)}(4.25) have the following geometrical symmetry

properties. Because a and b depend on the scalars q, k
b

and q ) k
b

we recover the well-known fact
that K(0)

0
is cylindrically symmetric around the direction of q. Further, recalling that e(

z
is a unit

vector along the angular momentum quantisation axis we deduce that one of the necessary
conditions for a "nite value of K(1)

0
Je(

z
) (q]k

b
) is the linear independence of the three vectors e(

z
,

the momentum transfer q and the momentum of the secondary electron k
b
. The orientation

K(1)
0

vanishes if these three vectors are coplanar. It changes sign if the orientation of the frame
formed by e(

z
, q, k

b
is inverted. In particular, we "nd a re#ection-anti-symmetry of K(1)

0
with respect

to h
q
"cos~1q( ) kK

b
. Su$cient conditions for K(2)

0
"0 are summarised by (q( ) e(

z
)2"1/3,

(kK
b
) e(

z
)2"1/3 and q( ) kK

b
"3(q( ) e(

z
)(kK

z
) e(

z
). This means, K(2)

0
"0 if qEk

b
and both (q and k

b
) of them

form a magic angle of h
.!'

"cos~11/J3 or p!h
.!'

with the angular momentum quantisation
axis, e(

z
. The portion K(2)

0
vanishes also if qE!p

b
and one of these vectors forms a magic angle

h
.!'

with e(
z
while the other one has a magic angle of p!h

.!'
with e(

z
. If q and k

b
are perpendicular

to e(
z
, Eqs. (4.23) and (4.25) yield

K(2)
0

"

1

J2
K(0)

0
(4.26)

and hence M(m/0)
FBA

"0.
As clear from Eq. (4.24) the orientational dichroism is absent when the dynamical factor Im(abH)

vanishes. This fact has been investigated in Ref. [103]. In that work it has been possible to deduce
analytically the condition under which the term (abH) is zero and therefore K(1)

0
"0, more details

can be found in Ref. [103].
The FBA simpli"es to the plane-wave impulse approximation (PWIA) when both "nal-state

electrons are considered as moving free in the "eld of the residual ion. Within the PWIA the
transition matrix elements reduce to

M(m)
PWIA

"i(ck
b
#g(q!k

b
))
m
"i(c@k

b
#gq)

m
(4.27)

with c@ and g being real. This has the important consequence that the orientation K(1)
0

is equal to
zero. Thus, the orientation of two continuum electrons is expected to decline for fast escaping
electrons because the PWIA would then be a satisfactory approximation. The two other quantities
K(0)

0
and K(2)

0
, however, are in general "nite.

4.4. Calculational schemes and experimental xndings

As in the case of double ionisation by a circular photon, the tensorial analysis can provide
information as to the transformation properties of the cross sections and can help express the
measurable quantities in terms of independent mathematical objects that characterise certain aspects
of the chiral multi-electron emission. To evaluate these objects one encounters the problem of dealing
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with the correlated few-body scattering states. In Section 3.9 we presented a method for the
calculations of cross-sections. Basically, these methods can be applied here as well. However, only
the 3C method has been used in addition to two other theories that are discussed in this section. Since
the experiment is focused on atomic sodium as a target we discuss the theories and their results in
light of the reaction cpB#NaPNa(32P

3@2
, F"3,m

F
"$3)#e~PNa`#e~#e~. All theories

on the market describes the sodium atom as an e!ective one-electron atom.
One standard method in atomic scattering theory that has been applied to the present problem is

the distorted wave Born approximation (DWBA) [97,98]. This method accounts for the short- and
long-range interactions in both the initial and the "nal channels but treats the two outgoing
electrons as being independent. Within the DWBA the total Hamiltonian H of the projectile-
electron and the target is written as

H"h
1
#h

2
#v

12
, (4.28)

where h
1

and h
2

are the Hamiltonians of the two electrons participating in the scattering process.
The operators h

1
and h

2
consist of the individual kinetic energy operators K

i
and the one-particle

potentials <
i
. The electron}electron interaction potential missing in <

i
is referred to as v

12
.

Within the framework of the DWBA, the collision Hamiltonian is split as [97,98]

H"(K
1
#;

1
#K

2
#<

2
)#(<

1
#v

12
!;

1
) , (4.29)

"K#< , (4.30)

where ;
1

is the distorting potential which has still to be de"ned [104]. The (unsymmetrised)
transition matrix elements are approximately given by

Sk
a
k
b
U*0/

J&L&M&
D¹DU!50.

JLM
k
0
T,Ss(~)(k

a
)s(~)(k

b
)D<D/

LM
s(`)(k

0
)T . (4.31)

The one-electron orbital of the active target electron is labelled by /
LM

. The distorted waves,
s(B)(k), are one-electron states and are derived as scattering solutions of the one-particle channel
Hamiltonian K. The radial part of the distorted waves is derived as a solution of a radial
second-order di!erential equation of the type

C
d2

dr2
!

l(l#1)
r2

!2v(r)#k2Dul(r)"0 . (4.32)

In relation (4.32), the potential v(r) corresponds to the distorting potential. In the example shown
below this potential is chosen as the equivalent-local static-exchange potential of Furness and
McCarthy [105] to describe the scattering in the "eld of the atom. The corresponding local
static-exchange potential for the ion is chosen, in addition to the Coulomb potential, when the
distorted waves are considered as electron}ion states.

We remark that in both alternatives of the DWBA the electron}electron interaction is not
included in the calculation of the outgoing distorted waves. Thus, the bound-electron orbital and
the distorted waves representing the slow escaping electron are orthogonal. Therefore, only the
electron}electron interaction potential v

12
contributes to Eq. (4.32).

A further scattering approach that has been applied to this problem is the dynamically screened
three coulomb waves method (DS3C) [76]. Within this method, the transition matrix elements are
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approximated as

Sk
a
k
b
U*0/

J&L&M&
D¹DU!50.

JLM
k
0
T,SW(~)

(ka ,kb )
D<D/

L,ML
k
0
T . (4.33)

In relation (4.33), the initial state of the electron}atom system is chosen as a product of a plane
wave describing the incoming projectile and a bound state describing the laser-excited atom state.
The perturbation < is that part of the total potential of the electron}atom system which is not
diagonalised by the state vector D/

L,ML
k
0
T (strictly speaking, this is only valid when the state vector

SW(~)
(ka ,kb )

D is an exact solution of the many-body problem consisting of the interacting atom and the
projectile electron at the time of the collision). To make the numerical calculations of the transition
matrix element tractable one has to assume that the residual ion (Na`) acts in the "nal state as
a positive unit point charge (Z

N!
`"1). For the case of Na this assumption seems plausible and

ensures correct boundary conditions. We mention however, that when the "nal state electrons are
scattered nearby the nucleus the assumption of a unit point charge of Na` becomes questionable.

In Section 3.9, we discussed the problems associated with the description of many-body
scattering states and presented the 3C wave function (3.48) as one of the possible approximate
solutions. However, as mentioned previously the 3C model lacks the coupling between the
individual two-body subsystems. This coupling might be very strong, especially at lower energies,
e.g., the 3C model yields a threshold law [106,107] at variance with the Wannier theory [71]
prediction and the experimental data close to the ionisation threshold. To circumvent this problem
one is obliged to account for the three-particle correlation [76], i.e. the coupling between
a two-body system and a third particle. This has been achieved by introducing an interaction
strength within the two-body subsystems that is dependent on the positions of all particles. As can
be expected this brings about delicate numerical problems as far as the evaluation of scattering
amplitudes is concerned. However, for the electron-impact ionisation case it turned out that
the position dependence of the two-particle interactions can be approximately converted into
a functional dependence on the momenta. The resulting wave function has exactly the same
functional form as Eq. (3.48), however the Sommerfeld parameters have now the form
b
j
:"Z

j
/k

j
, j"a, b, and b

ab
:"Z

ab
/2k

ab
, where the product charges have been derived to be (for

more detail cf. Refs. [76,100,101])

Z
ba

(k
a
, k

b
)"[1!( f g)2ab1]ab2 , (4.34)

Z
a
(k

a
, k

b
)"!1#(1!Z

ba
)

k1`a
a

(ka
a
#ka

b
)Dk

a
!k

b
D
, (4.35)

Z
b
(k

a
, k

b
)"!1#(1!Z

ba
)

k1`a
b

(ka
a
#ka

b
)Dk

a
!k

b
D
. (4.36)

The functions occurring in Eqs. (4.34) and (4.35) are de"ned as

f :"
3#cos2(4a)

4
, tan a"

k
a

k
b

, (4.37)

g :"
Dk

a
!k

b
D

k
a
#k

b

, (4.38)
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Fig. 10. A schematic representation of the experimental set-up for the measurement of the orientational dichroism in
electron impact ionization of circular electronic state.

b
1

:"
2k

a
k
b
cos(h

ab
/2)

k2
a
#k2

b

, (4.39)

b
2

:"g2(!0.5#k) , (4.40)

a :"
E

E#0.5
. (4.41)

Here E is being measured in atomic units and k"1.127 is the Wannier index for Z
N!

`"1. The
interelectronic relative angle h

ab
is given by h

ab
:"(cos~1kK

a
) kK

b
).

From Eqs. (4.34)}(4.36) it is clear that when two particles approach each other (in momentum
space) they experience their full two-body Coulomb interactions, whereas the third one &sees' a net
charge equal to the sum of the charges of the two close particles. When the two electrons recede
from the residual ion (Na`) in opposite directions and equal velocities (with respect to Na`) the
electron}electron interaction is subsumed completely in an e!ective electron}ion interaction. In
addition, it can be shown that the behaviour of the total ionisation cross-sections evaluated using
the "nal state function Eq. (3.48) with the product charges Eqs. (4.34)}(4.36) is compatible with the
Wannier threshold law.

The experiments have been performed using the set-up shown schematically in Fig. 10. A cop-
lanar asymmetric scattering geometry is chosen in which the momentum vectors k

0
, k

a
and k

b
of

the incident and two "nal state continuum electrons of respective energies E
0
, E

a
and E

b
are

con"ned to a common plane. The angles h
a

and h
b

are measured with respect to the incident beam
(cf. Fig. 10). In addition, a target beam of sodium atoms is produced by e!usion of sodium gas
through an aperture positioned at the output stage of a recirculating oven [102]. Intersecting at
right angles the plane de"ned by the electron and sodium beams, and completely encompassing the
region formed by their overlap, is a 589nm laser beam used to excite the sodium atoms. The
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initially linearly polarised laser light is converted to circularly polarised radiation by transmission
through a quarter wave plate, the rotation of which by 903 reverses the helicity of the radiation
"eld.

The coincidence rate is measured for two di!erent helicities of the laser light and thus the
orientational dichroism can be determined, as done in Fig. 11.

In Fig. 11 the DWBA results are shown along with the FBA ones. Since the scattering geometry
is quite favourable for the application of the FBA (moderately high incident energy and small
momentum transfer) the experimental data are reproduced satisfactorily well by the FBA, even
though some details, such as the small shoulder in the angular distribution, is only reproduced by
the DWBA calculations. As clear from the analytic results within the FBA, the orientational
dichroism (the di!erence between the solid and the dotted curves) shows a re#ection antisymmetry
at the transfer momentum direction q and thus diminishes at the position of q. This symmetry
property is well con"rmed by the experiment. The results for a hydrogenic target Fig. 11 di!ers
only slightly from those for atomic sodium. This indicates that the picture of considering the
sodium target as an e!ective one electron atom is adequate for present purposes. In Fig. 11 also
shown are the calculations of the PWIA. Here the orientational dichroism vanishes identically, as
discussed above. We note a double peak structure. The origin of this structure is the nodal structure
of the initial bound state that leads to the minimum located at q. This minimum in the angular
distribution is basically the origin for the two peaks in the PWIA. Both the FBA and the PWIA
(and in fact the DWBA) become less accurate when lowering the incident energy, as done in Fig. 12.
Here we see a considerable break of the symmetry (around q), as anticipated by the FBA for the
orientational dichroism. Furthermore, it is clear from Fig. 12, that there is a subtle interplay
between the "nal-state correlations (included in the "nal-state wave functions) and the sense of
rotation of the initially bound electron. In fact, in this paricular case of Fig. 12, only the DS3C
model reproduces the features of the orientational dichroism. This is consistent with the con-
clusions of previous studies on the ionisation of randomly oriented atoms [106,100,101] where the
3C model shows signi"cant shortcomings at low energies (as compared to the experiments and the
DS3C model).

The situation shown in Fig. 12 is in contrast to the one observed in the case of PDI where
the propensity rules and the symmtery properties of the circular dichroism is valid irrespective of
the modelling of the scattering dynamics.

It is the subject of current research to understand the physical mechanisms that underlies the
strong e!ects of the orientation of the target on the electron pair emission at lower energies.

Further current and future research in this "eld are focused on the role of the spin in the emission
process. First results can be found in Refs. [108,109].

5. Conclusions and outlook

In this work we discussed conceptual and numerical methods for the analysis and the treatment
of chirality e!ects in multi-electron emission. A brief account of the chiral single-electron photo-
emission served as an introduction to the subject. In this case the chirality of the experimental
set-up is caused by an initial orientation of the target or by specifying a certain projection of the
photoelectron's spin. The chirality of the experiment is then changed by inverting the initial state
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Fig. 11. The state-resolved cross-sections p
L/1,mL/B1

for the ionisation of atomic sodium (a) and atomic hydrogen (b).
The experimental arrangement is depicted in Fig. 10. The x-axis is chosen as the wave vector of the pumping laser
whereas the incoming beam de"nes the z direction. The polar angle of the scattered electron is "xed to h

a
"203 whereas

the polar angle of the ejected electron h
b

is varied. The azimuthal angles are u
a
"1803 and u

b
"03. The impact energy

and the energy of the ejected electron are, respectively, E
0
"150 eV and E

b
"20 eV. In (a) the cross-sections

p
L/1,mL/B1

for a Na(3P) target are calculated within the FBA (p
L/1,mL/~1

(thin solid line); p
L/1,mL/1

(thin dotted line))
and the DWBA theory [p

L/1,mL/~1
(solid line); p

L/1,mL/1
(dotted line)]. Experimental data are from Ref. [58]. In (b) the

corresponding calculations are shown for a hydrogenic target: FBA(m
L
"!1) (solid line), FBA(m

L
"1) (dotted line)

and PWIA (dashed line).

Fig. 12. The electron impact ionisation cross-section for the scattering of 60 eV electrons from Na32P
3@2

m
F
"!3 ("lled

circles) and m
F
"#3 (open circles). The scattering geometry is shown in Fig. 11. The scattering angle is

h
a
"203, /

a
!/

b
"p and E

b
"20 eV. The DS3C cross-sections are indicated by thick solid (m

F
"!3) and thick

dotted lines (m
F
"#3) whereas the 3C results are shown as the thin solid (m

F
"!3) and dotted lines (m

F
"#3) (the

3C results are multiplied by a factor of 1.5). The measurements are normalised to the m
F
"!1 DS3C cross-section peak.

The momentum transfer direction is indicated by the arrow q. The inset shows the ground state Na32S
1@2

transition
normalised to the DS3C cross-section.

orientation or by #ipping the photoelectron spin projection. The dependence of the photoelectron
spectrum on the chirality of the experimental set-up is analysed within the density matrix
formalism. For two-electron emission we considered two distinct cases. In the "rst case, we
assumed a randomly oriented initial state. The chirality is then imparted to the system via
a circularly polarised photon that's absorbed by the two electrons. We showed using a formal
tensorial analysis that the continuum spectrum of the electron pair depends in a characteristic way
on the helicity of the absorbed photon. The actual magnitude of the chiral e!ects has been
estimated from simple analytical models and more elaborate numerical methods were brie#y
presented for quantitative predictions. The "ndings were analysed and interpreted in light of recent
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experiments. Furthermore, we envisaged the chiral e!ects in the photoelectron Auger-electron
coincidence spectrum. The Auger hole is created by ionising a randomly oriented target by
a circular polarised photon. Thus, the chirality e!ects are due to a transfer of the photon's helicity
to the two escaping electrons. Much of the work discussed here is focused on two active electron
systems. It is still unclear in which way the chirality of the photon will be shared in a system with
more than two interacting particles, i.e. in one-photon triple ionisation or in excitation double
ionisation. A further topic for future research is the behaviour of chiral multi-electron emission
from molecular targets. Here, the role of the molecular bond as an additional axis in space is still to
be unravelled. Some work in this direction has just been started [53].

In the last section we studied the case in which an atomic target is oriented by optical pumping
with circular polarised light. The oriented atomic target is then ionised by low-energy electrons.
Here the chirality e!ect is caused by the initial orientation of the electronic state. We formulated
and analysed the theoretical concepts for the transition of the screw sense of the bound valence
electron motion to the continuum electron pair. Numerical methods for the calculations of the
cross-section for the electron-impact ionisation of oriented atoms are presented and their results
are contrasted against recent experimental data.

Current theoretical and experimental research are focused on the role of the electron spin
projections [109,108] and on the electron emission from naturally oriented targets, such as ferromag-
netic "lms or molecules oriented on surfaces. For isotropic targets it has been demonstrated [90] that
the electron-impact ionisation can be employed as a spectroscopic tool to visualise the electron
momentum density in electronic systems. Measuring the chiral e!ect in the electron-impact ionisa-
tion spectrum renders possible an insight into the sense of circulation of the initially bound electron.
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Appendix A

In this section we derive analytical relations for the circular dichroism and for the cross-sections
of the one-photon double ionisation using simple dynamical models for the motion of the two
electrons in the "eld of the ion.

A.1. The analytical form of the circular dichroism

In this appendix we derive analytical expressions for the double-ionisation cross-section upon
the absorption of one circularly polarised photon. Closed analytical relation for the circular
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dichroism CD are obtained. For the analysis we employ the wave functions (3.39) and (3.40) for the
initial and the "nal state, respectively. The integrals involved in calculating the cross-sections can
be reduced to Fourier transforms of the type

I"Pd3r e( ) r exp(!br) exp(ip ) r)
1
F

1
(!ia, 1, i[k r#k ) r]) (A.1)
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, (A.2)

where P :"p#je( . Employing the wave function (3.39) and (3.40) for the initial and the "nal state
and making use of Eq. (A.2), the cross-section [Eq. (3.1)] can be written in the form
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After some algebraic manipulation, the functions I
j
, J

j
, j"a, b in Eq. (A.3) can be expressed as
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In Eq. (A.6) the real scalars f
j

are given by
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j
arctanA

k
j

Z
s
BD , (A.7)

whereas in Eq. (A.5) the real vectors B
j

read
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We further de"ne the real vectors A
a
"B

a
J
b
, A

b
"B

b
J
a

and the un-normalised dichroism as
D"W(p`)!W(p~). From Eq. (A.3) an expression derives for D:
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The latter equation can be simpli"ed to
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Making use of the re-coupling formula, given by Eq. (3.6), we can write Eq. (A.10) in the form
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b
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a
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) ) kK . (A.11)
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The function F is then given by
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For the present study it is important to note that F [Eq. (A.12)] is angular independent and positive
de"nite for all k

a
, k

b
.

A.2. Analytical expressions for the one-photon double-ionisation cross-section

Eq. (A.11) is the expression for the un-normalised dichroism. To emphasise the independence of
the D and =(pB) we de"ne a normalised circular dichroism, CD, as

CD"

D
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, (A.13)

where

R :"W(p`)#W(p~) . (A.14)

From Eq. (A.3) and after lengthy, but straightforward algebraic manipulation we deduce
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Making use of Eqs. (A.5), (A.6) and (A.8), Eq. (A.15) can be reduced to
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Now combining Eqs. (A.16) and (A.11) we end up with the "nal result for the CD
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where F is positive de"nite in the six-dimensional k
a
?k

b
space and has the form
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