
Jan-Martin Wagner,1 Jan Bauer,2 and Otwin Breitenstein2
1Institute for General Materials Science, Faculty of Engineering, Christian Albrechts University of Kiel, Kaisersstr. 2, 24143 Kiel, Germany
2Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany

(Received 17 December 2012; accepted 29 May 2013; published online 17 June 2013)

In their recent publication,1 Zhang et al. investigate the temperature variation of forward and reverse J–V characteristics of a small piece (10 × 12 mm²; denoted as “SII”) cut from a multicrystalline silicon solar cell made from a boron-doped wafer by diffusing-in a phosphorous-doped emitter. For not-too-large reverse bias voltages (where usually defect-induced type-2 breakdown dominates2), they find a positive temperature coefficient of the reverse current, from which they conclude that Zener breakdown is the major breakdown mechanism.

However, this conclusion is highly questionable since the investigated temperature coefficient does not refer to the local breakdown currents but to the total current. As we have shown earlier,3 at least for not-too-high temperatures, the local breakdown currents may have a negative temperature coefficient even though the global current has a positive one for such low reverse voltages. The reason for this seeming discrepancy is that in multicrystalline silicon solar cells, the reverse current does not only flow at localized breakdown sites but is also found throughout the area of the solar cell, there having a positive temperature coefficient.3

Obviously, Zhang et al. assume that their cut-out sample “SII” consists only of breakdown areas or is at least dominated by them. However, this cannot be true since type-2 breakdown sites are of highly localized, micron-sized nature as shown by Wagner et al.,3 Lausch et al.,4 Kwapil et al.,5 Schneemann et al.,6 Gundel et al.,7 and Breitenstein et al.2 The temperature-dependent reverse-bias I–V characteristics presented by Zhang et al. for their sample SII are qualitatively indistinguishable from those of a complete cell (as presented, e.g., in Ref. 3), showing a soft-exponential behavior. Hence the idea of Zhang et al. that the temperature dependence of the forward characteristic might give a clue about the state of the p–n junction at breakdown sites and/or the type of breakdown involved is not applicable to their measurements.

For reverse bias, Zener tunneling is expected in silicon junctions at a field strength of 10⁶ V/cm, which is only achievable with base doping concentrations higher than 5 × 10¹⁷ cm⁻³ and the breakdown voltage is then about −5 V.9,10 Neither the high base doping concentration can be expected in the samples used by Zhang et al. nor breakdown voltages of about −5 V are shown by Zhang et al. Instead the reverse J–V characteristics in Fig. 2 show typical breakdown voltages of about −11 V.1

Summing up, we find that on the basis of the measurements published by Zhang et al.,1 the conclusions they draw are highly questionable, containing basic misconceptions regarding the microscopic nature of type-2 breakdown.