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The two-diode model is widespread for interpreting dark and illuminated current–voltage character-

istics of solar cells, though it does not hold correctly for high current densities due to the distributed

character of the series resistance. This is one reason for the fact that fitting the dark and the illuminated

characteristic leads to two different sets of two-diode parameters. After locally analyzing a typical

multicrystalline solar cell, it is found that here the grid conductivity represents the most significant

contribution to the distributed series resistance. A simplified equivalent circuit implying a

1-dimensional current distribution is used for simulating current-dependent effective (lumped) series

resistances in the dark and under illumination. It is found that the influence of the distributed series

resistance on both characteristics can be described empirically by introducing a series resistance being

variable for high currents. Moreover, well-known departures from the superposition principle often

cannot be neglected. Therefore the second diode contribution is generally stronger under illumination

than in the dark, and also the parallel resistance may be affected. We introduce only one additional

series resistance parameter and consider that the second diode parameters and the parallel resistance

may be different under illumination and in the dark. In this way, the current dependence of both the

dark and the illuminated series resistance can be described with the same consistent set of first diode

and series resistance parameters. Based on these findings, a two-diode model with an analytically given

variable series resistance is proposed, which may describe both the dark and the illuminated

characteristic up to large current densities in good approximation with one and the same physically

meaningful parameter set.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The dark and the illuminated current–voltage (I–V) character-
istic of solar cells are usually described by the two-diode or
double-diode model, where the first diode describes the so-called
diffusion current having an ideality factor of unity, and the second
diode describes the current due to recombination in the depletion
region. For the latter current contribution often an ideality factor
of 2 is assumed, but for many solar cells the ideality factor is
found to be larger than 2. Whereas the local diffusion current
density is closely related to the effective local minority carrier
lifetime in the bulk and the recombination properties of the
surfaces, the recombination current (just like the ohmic shunt
current contribution due to the parallel shunt resistance Rp) does
not show this correlation but flows mainly in local positions like
the cell edge or other extended defects crossing the p–n junc-
tion [1]. The homogeneously flowing recombination current
density according to established diode theory [2] is usually about
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two orders of magnitude smaller than the measured average
recombination current density. Thus, in crystalline silicon solar
cells, also in multicrystalline (mc) ones, the major contribution of
the recombination current flows in some local ‘‘non-linear shunt’’
positions, like the edge region, and in the overwhelming part
of the area the diffusion current dominates [1]. Therefore the
ideality factor under low injection condition is indeed close to
unity in most parts of the area, if the lifetime is not dependent on
the minority carrier concentration [3]. The large ideality factor
of the recombination current can be attributed to multi-level
recombination [4].

A decisive parameter of a solar cell is its series resistance. In
the conventional two-diode model one series resistance Rs is used
for all three current contributions (diffusion, recombination, and
ohmic). For becoming independent of the cell area, it is usual to
express all currents as current densities and Rs as an ‘‘area-
related’’ series resistance, given in units of O cm2. Originally, this
definition was probably based on the assumption of a homo-
geneous current flow and a homogeneous voltage drop across the
whole cell area. Only then the global (lumped) series resistance
equals the area-related Rs divided by the cell area. However, this
definition is also applicable to an inhomogeneous current dis-
tribution and locally varying series resistance by defining the
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local series resistance as the local voltage drop divided by the
local current density, as it is being done by most authors. The
most successful method for imaging this local series resistance
quantitatively is based on photoluminescence (PL) imaging [1,5].
The concept of an area-related series resistance assumes that each
region (mapped by a single camera pixel) of a cell is connected to
the cell terminal by its own individual series resistance. Thus, this
concept actually assumes that the metallization and the emitter
have a negligible resistance (all positions show the potential of
the terminal), and that the series resistance appears at the vertical
current flow through the cell. It is well known that this is by far
not the case. Instead, all currents flowing horizontally in the cell
may lead to a distributed series resistance [6,7]. Hence, in each
position the voltage drop due to the horizontal current is not only
due to the vertical diode current flowing in this position, but also
due to diode current contributions from the whole lateral current
path to the terminal. Moreover, the different types of current
contributions (diffusion, recombination, and ohmic) are distrib-
uted inhomogeneously and do not correlate with each other [1],
which will be discussed in Section 4. The goal of this contribution
is an easy way to implement the distributed series resistance into
the two-diode model. This model will work only for a typical
‘regular’ solar cell not showing e.g. extended regions of high series
resistance.

If the diode current flows only in the position of the considered
pixel and the current density in the rest of the cell is zero (no
illumination), the horizontal path resistance between this pixel
and the two grid lines or busbars will depend on the lateral
position. It is zero at the two terminals (grid lines or busbars,
respectively) and shows a maximum in the middle. As it will be
shown in the next section, the dependence of this resistance on
position is also a parabola, like for the distributed Rs under
illumination. We propose to name this type of local dark resis-
tance ‘‘geometrical shunt resistance’’, since it holds for a local
current flow only in this position (which is conventionally called a
‘shunt’) if the homogeneous current density in its surrounding is
negligibly small. We will analyze this geometrical shunt resis-
tance in the context of an area-related resistance in the next
section. Our definition of the local resistance contribution, which
is induced by the distributed series resistance, already includes
this geometrical effect.

There have been numerous publications dealing with the
distributed series resistance effect, see e.g. [6–10]. They are often
based on a 2-D solar cell model which has to be evaluated
numerically. Hence, it is not easy to extract the device parameters
from measured I–V characteristics. Fischer et al. [7] have pro-
posed to combine all distributed Rs components into one para-
meter and to fit the dark and illuminated characteristics to a
1-dimensional cell model. However, this approach is not directly
related to the two-diode model, and for its evaluation a special
software is necessary. The approach proposed in this work is
related to that used in [7], but we finally describe the high-
current phenomena by an analytically given current-dependent
series resistance. In a recent work, Fong et al. have measured
current- and voltage-dependent series resistances for a set of
monocrystalline silicon cells, based on the multi-light method
[11]. Their approach is not based on the two-diode model and
they do not use an analytical description of their results. In the
present paper, based on the analytic results presented in [6] and
model B of [7], we use analytic approaches to describe the
current-dependent series resistance in the dark and under illu-
mination and use them in the conventional two-diode model
instead of the usual constant series resistance Rs. Following [10]
we determine the basic two-diode parameters from evaluating
the dark characteristic at low currents and then vary the fixed and
the distributed part of Rs until the whole dark characteristic is
well described. For describing the illuminated characteristic, the
bulk recombination-induced departure from the superposition
principle after Robinson et al. [12] is considered by an additional
contribution to the second-diode current. It is described there
that even the measured ohmic parallel conductance may be
influenced by this effect. This approach provides a practicable
method to describe dark and illuminated I–V characteristics up
to high current densities by a consistent simple and physically
meaningful parameter set.

In Section 2, we first describe the main issues for a correct I–V

curve measurement, which is necessary for an evaluation of the
two-diode parameters. Then in Section 3 a typical industrial solar
cell is locally analyzed with respect to its distributed series
resistance, based on an Rs image obtained from electrolumines-
cence (EL) measurements, and the simulation of the distributed Rs

used in this work is explained. In Section 4 the one-dimensional
simulation is performed for various cell parameters, and the
simulated results are described by an analytic model of a variable
lumped Rs. Finally, in Section 5 the experimental dark and
illuminated characteristics of a typical cell are fitted to this model.
2. Experimental

The measurement of the I–V characteristics was done on a self-
constructed water-cooled measurement chuck made from copper.
The cell is sucked on the chuck by a vacuum and is biased by a
four quadrant power supply. It enables a homogeneous contact of
the rear side of the solar cell, while each front side busbar is
contacted by six spring-loaded pins mounted along a low-ohmic
rail. It is essential for the investigation that no additional series
resistance due to the contact scheme is measured. Therefore a
four-probe contact scheme is used, which includes additional
sense pins contacting the middle of each front side busbar and
one pin sensing the rear side contact. An identical contact scheme
was also used for measuring the EL-images.

Especially for the measurement of the illuminated I–V char-
acteristic it has to be ensured that the temperature of the solar
cell does not increase due to the irradiated power. Therefore an
independent measurement of the solar cell surface temperature
was obtained by an IR-thermometer. Under illumination, the
temperature of the chuck was decreased until the temperature
of the cell reaches 25 1C.
3. Local resistance analysis

As mentioned above, the traditional approach to image the
local series resistance in solar cells defines the local Rs as the
voltage drop between the cell terminals and the local diode bias,
divided by the local current density [5,13–16]. Though this
definition of Rs does not consider its distributed character, the
resulting Rs images correctly describe the local voltage distribu-
tion at the p–n junction at the biasing condition of the Rs imaging,
if the local current density is known. However, for other biasing
conditions, slightly different Rs images may be necessary to
describe the local voltage distribution. A quite simple method
for measuring the local series resistance is EL Rs [14,16], where
two EL images measured at two different biases are evaluated.
The necessary scaling factor f included in this analysis may be
chosen such that the averaged J01 equals the global value taken
from the dark I–V characteristic. It will be discussed below that
there are clear indications that the ideality factor of the diffusion
current may be somewhat larger than unity for multicrystalline
solar cells. Therefore we have extended the theory for quantita-
tively evaluating EL images [16] by considering an ideality factor
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Fig. 1. (a) EL Rs image of the whole investigated cell (n1¼1.06), (b) investigated symmetry element with Jv being the vertical and Jh the horizontal current density (without

illumination), (c) averaged EL Rs profile of the marked region between the two busbars in horizontal direction, together with the parabolic data fit (red dashed line) and the

profile expected from the evaluation of the I–V curve (blue dash-dotted), (d) Rs profile in y direction at x¼0 (dotted line in (a)). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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of the diode current different from unity [17]. Fig. 1(a) shows the
EL Rs image of a typical industrial multicrystalline solar cell based
on the evaluation of EL images taken at 548 and 597 mV by
assuming an ideality factor of 1.06, which will be justified below.
Qualitatively, this series resistance looks very similar to that by
assuming an ideality factor of 1, only the quantitative values
depend on the chosen ideality factor. The cell investigated here
was made from a multicrystalline 15.6 cm�15.6 cm sized wafer
produced by the Bridgeman technique and holding a resistivity of
1–2 Ocm. It was manufactured by an industrial process including
acidic texture, a front grid design with two busbars, and full-area
Al-alloyed back contact. The solar cell shows Voc¼612 mV,
Jsc¼33.1 mA/cm2, FF¼76.8 %, and an energy conversion efficiency
of Z¼15.6 %. Since there are just a few irregularities of Rs between
the busbars, the marked region in Fig. 1(a) may be considered as
typical for this type of cells. In Fig. 1(b) the symmetry element
used in the later simulation is sketched and the electron currents
are indicated. Fig. 1(c) shows the averaged horizontal Rs profile
of the region selected in (a) (from busbar to busbar), and (d) shows
the vertical Rs profile across the grid lines taken in the middle of
the cell as marked in (a) by the dotted line. A comparison of (c)
and (d) shows that the strongest spatial variation of Rs of
0.66 O cm2 is in horizontal (grid) direction, where the lateral
series resistance is dominated by the resistance of the grid lines.
The variation of Rs in vertical direction (from grid line to grid line)
due to the emitter sheet resistance is smaller (see Fig. 1(d)).
It even can be expected that the local Rs minima in grid positions
are, at least partly, caused by a shadowing effect. Thus, the
distributed series resistance caused by the emitter resistivity is
obviously not the dominant contribution to the distributed Rs,
which is in contrast to the assumptions made e.g. in [6,7,11].
Qualitatively similar series resistance images of ‘regular’ solar
cells, showing a stronger Rs variation from busbar to busbar than
from grid line to grid line, have been obtained also by other
authors [1,13,14,16]. It can therefore be expected that the
description of the distributed Rs of the whole cell by a one-
dimensional model regarding only the grid line resistance may
describe the dominant contribution to the distributed Rs.

First, for the one-dimensional case sketched in Fig. 1(b) the local
geometrical shunt resistance according to the definition given
above will be calculated. Hence, here we assume that only in a
position x between two terminals with a distance 2d a vertical
current flows. This is equivalent to a shunt line in y direction
parallel to the busbars in the dark, carrying this current, which may
be e.g. a scratch parallel to the bus bars. The advantage of this
shunt geometry, in comparison to a point shunt, is that it is easy to
analyze and avoids any singularity. The series resistance to this line
(referred to a shunt stripe of width of w¼1 cm) is the parallel
circuit of the series resistances to the left and the right busbar:

1

Rgeo
s

¼
w

rs dþxð Þ
þ

w

rs d�xð Þ

Rgeo
s ¼ rs

d2
�x2

2wd
ð1Þ

rs is the sheet resistance of the device, here governed by the
grid lines. This dependence is parabolic, it is zero at x¼þ/�d, and
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its maximum value at x¼0 is given by rsd/2w. If this resistance
has to be expressed as an area-related resistance (in units of
O cm2), it has to be multiplied by w�dx, with dx being the width
of the shunt line. The maximum value at x¼0 becomes

Rmax
geo ¼ rs

ddx

2
ð2Þ

Interestingly, the area-related resistance to a local shunt
depends on its geometry, the smaller the shunt area, the lower
is the area-related resistance to it. This was observed already in
[1], where the dark resistance image measured by the RESI
method [15] showed local minima in shunt positions, in contrast
to the illuminated resistance image measured by PL [5], which is
measured under homogeneous current flow condition. On the
other hand, if the vertical current density outside of this shunt is
zero, but the voltage drop is obviously not, in this region the area-
related series resistance is infinite. In reality the current is not zero
outside of the shunts, neither in the dark nor under illumination,
therefore also there the area-related series resistance remains
finite. Nevertheless, the general tendency remains: If there is a
local shunt where the current density is significantly higher than in
its surrounding, in shunt position the area-related series resistance
(in conventional definition) decreases, whereas in its surrounding
it increases, because of the action of the distributed series resis-
tance. For point shunts we have, in addition, the current crowding
effect, which again increases the series resistance with decreasing
shunt area. This whole situation is not intuitively expected, since it
contradicts the idea of a current-independent series resistance
network. The nominal series resistance decrease in shunt position
is here only due to the conventional area-related definition of Rs,
which does not hold for any horizontal current flow. As (1) shows,
the real resistance to this line shunt is constant and independent of
dx. This situation may be called the shunt paradox.

For homogeneous sheet resistance and diode parameters, if the
voltage drop at a distributed series resistance is small compared
to the thermal voltage VT¼kT/e (low current in the dark or low
illumination intensity) and the vertical current density is homo-
geneous, a pure 1-dimensionally distributed series resistance can
still be treated analytically, as it has been shown e.g. in [6,7]. In
contrast to the procedure described there, we select x¼0 in the
middle between the busbars and x¼d in busbar position, with the
active element length d being half of the distance between two
busbars (see x axis in Fig. 1(a) and (b)), which simplifies the
mathematical treatment. If the horizontal resistance in the
emitter layer is dominated by the grid resistance, its equivalent
sheet resistance in x direction is rs¼Rgrid�D, with Rgrid being the
grid resistance (in units of O/cm) and D the distance between two
grid lines, here being D¼0.233 cm. If Jh(x) is the horizontal
current density at position x (in units of A/cm) and Jv(x) is the
vertical diode current density in this position (in units of A/cm2),
in every position x holds:

@VðxÞ

@x
¼ V 0 xð Þ ¼ �rsJh xð Þ ð3Þ

@JhðxÞ

@x
¼�Jv xð Þ ð4Þ

leading to

@2VðxÞ

@x2
¼ V 00 xð Þ ¼ rsJv xð Þ ð5Þ

With the starting condition V(0)¼V0, V0(0)¼0, and Jv(x)¼con-
stant (low current density), Eq. (5) may be easily integrated over
x, leading to the well-known parabolic voltage profile:

V xð Þ ¼ V0þ
1

2
rsJvx2 ð6Þ
V(d)¼V0þrsJvd2/2 is the terminal (bias) voltage VB. Based on
the conventional definition of an area-related series resistance,
the local resistance due to this distributed series resistance is:

Rdis xð Þ ¼
VðdÞ�VðxÞ

Jv

¼
rs

2
d2
�x2

� �
ð7Þ

The maximum local resistance at x¼0 due to the distributed
resistance is

Rmax
dis xð Þ ¼

rsd2

2
ð8Þ

This has to be compared with the maximum of the (area-
related) geometrical shunt resistance (1), which would hold if the
vertical current flowed only in the considered local position and
there was no vertical current flow outside of this region. Since
dx5d holds, this geometrical resistance is always small com-
pared to the distributed resistance described above and does not
have to be confused with that.

The average (effective, lumped) distributed series resistance is
obtained by averaging (7) from 0 to d, leading to:

Rdis ¼
1

3
rsd2

ð9Þ

The area-related resistance rsd
2 has been called ‘‘geometrical

resistance’’ in [6] and ‘‘RCC’’ in [7]. We will refer to (9), including
the factor 1/3, as the (area-related) ‘‘global distributed series
resistance’’ Rdis of this cell. For low voltages resp. currents, this
resistance simply adds to a spatially homogeneous (not distrib-
uted) series resistance Rhom.

If high cell current values are considered, the voltage drop at
the distributed series resistance is not small compared to VT

anymore, Jv(x) becomes dependent on x, and (6) cannot be easily
integrated analytically. However, based on (3) to (5), a simple yet
accurate numerical analysis is possible using the geometry of
Fig. 1(b). We are using model (B) of [7], hence in each position x

we assume, in addition to the distributed resistance, a homo-
geneous resistance Rhom in series with the local diode, which is
only described by its saturation current density J01 and its ideality
factor n1, here taken as n1¼1. As mentioned above, the current
contributions of J02 and Rp are not flowing homogeneously and
need not be considered here. Then the local vertical current
density is described by the following implicit equation (Jsc being
the short circuit current density under illumination, the dark case
is Jsc¼0):

Jv xð Þ ¼ J01 exp
VðxÞ�Rhom � JvðxÞ

n1 � VT
�Jsc ð10Þ

We restrict our treatment of the distributed resistance to its
contribution due to the grid finger resistance, which is described
by an effective sheet resistance rs and a path length d leading to
an effective global distributed resistance of Rdis¼rsd

2/3. This is, of
course, only a first approximation, since eventual contributions
of the emitter resistivity to the distributed resistance are not
explicitly considered yet. Following Fischer et al. [7] we expect
that this contribution may finally be regarded by increasing the
amount of the effective global distributed series resistance of the
whole cell, which will be discussed below. For the numerical
evaluation of (3) to (5) we split the integration path from x¼0 to d

into equidistant fractions of length dx and assume that the
vertical current density Jv(x) is constant within each fraction.
Then the voltage profile between two positions x and xþdx is a
quadratic function, for which the following relations hold:

V xþdxð Þ ¼ V xð ÞþV 0 xð Þdxþ
V 00

2
dx2 ð11Þ

V 0 xþdxð Þ ¼ V 0ðxÞþV 00ðxÞdx ð12Þ
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The starting boundary conditions at x¼0 are

Vð0Þ ¼ V0 V 0ð0Þ ¼ 0 JhðxÞ ¼ 0 ð13Þ

Starting from x¼0, step by step the local voltage V(x) and its
gradient V0(x) are calculated for the next position xþdx by using
V0 of (3) and V00 of (5). In each position Jh(x) is incremented using
(10) according to

Jh xþdxð Þ ¼ JhðxÞþ JvðxÞdx ð14Þ

Note that here the integration direction is opposite to the
electron current direction (arrows in Fig. 1(b)) and we consider
dark conditions, therefore both V0 and V00 are positive. The calcula-
tion of Jv(x) according to (10) is the only step that cannot be
performed analytically. We have made all calculations by using
Mathematica [18]. It was found that, for dx smaller than 0.05 mm,
the result did not depend on dx anymore. Since for our cell the
distance of the edges to the busbars was slightly larger than half the
distance between the busbars, we simulate the given solar cell
structure with d¼3.9 cm, being slightly different to d¼3.75 cm
measured at the cell. V(d) is the cell bias VB and Jh(d) is the current
of a 1 cm wide and d¼3.9 cm long stripe. For obtaining the current
I(V) of the whole cell with an area of A¼15.6�15.6¼243.4 cm2, the
current of one symmetry element has to be multiplied by a factor of
A/(3.9 cm2). Repeating this whole procedure for various starting
voltages V(0) yields the complete I–V characteristic. Fig. 2(a) shows
the vertical current profiles and (b) the voltage profiles in the dark
calculated in this way for a cell having typical series resistance
parameters of Rhom¼0.2 O cm2 and Rdis¼0.7 O cm2. We assume
J01¼1.48�10�12 A/cm2 and Jsc¼33.1 mA/cm2, as for our cell
assuming n1¼1 and plot the data for two biases of V¼0.5 and
0.639 V, where a dark current corresponding to Isc flows. We see
that at 0.5 V bias the current density is still homogeneous, but at
0.639 V the current density varies spatially by a factor of almost
3 and the local voltage by 31 mV due to the distributed series
resistance. Calculating the local series resistance profile between the
busbars by dividing the voltage drop at each position through the
local current density Jv(x) leads to a parabolic characteristic for
almost homogeneous currents at 500 mV as predicted by Eq. (7). In
the high current case at 639 mV, the curve follows a clearly different
behavior with a higher series resistance in the inner part of the cell
and a lower Rs near the busbars (see Fig. 2(c)). This is a consequence
from the changed current paths, namely that (in the dark) at high
voltage the injection occurs preferredly close to the busbars resp.
grid lines.
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4. The current-dependent lumped series resistance

The numerical simulation of the I–V characteristics described
above has been performed in the dark and under 1 sun illumina-
tion for various values of the effective global distributed and
homogeneous series resistance. Then the obtained characteristics
have been interpreted using a set of ideal one-diode models with
differing Rs values in order to determine the current-dependent
lumped Rs for the whole device. For that, for each current density
value it has been checked which lumped Rs in an ideal one-diode
model (assuming homogeneous current flow in the whole area)
leads for this current to the same terminal voltage. The results of
these simulations are shown for some typical parameters by the
symbols in Fig. 3. As it has been shown previously [6,7], the dark
lumped Rs reduces with increasing current density, and the
illuminated Rs increases. These results completely agree with
that of Fig. 4 in [6], where the data under illumination are
displayed as a function of Jsc and not of the terminal current.
These simulations were performed assuming an ideality factor of
n1¼1. In the final results a deviating ideality factor is regarded by
multiplying the thermal voltage VT by n1.

Araújo et al. [6] have derived analytical expressions for the
current-dependent Rs due to a distributed series resistance.
However, for the illuminated case, they only derived expressions
for Rs as a function of the short circuit current density Jsc under
special illumination conditions (open and short circuit). Interest-
ingly, these expressions do not depend on diode parameter J01 but
only on the current density J, since the value of J01 only affects the
amount of the diode voltage, but not the voltage drop at Rs. For
the illuminated series resistance under open circuit condition (as
a function of Jsc) they derived an expression given in Eq. (20) of
their paper [6]. We have found that, by introducing a scaling
factor of 1.6 for the current density, this formula nicely approx-
imates our and their numerically obtained current-dependence of
the dark Rs, including the limiting values for high and low current
densities for arbitrary values of Rhom and Rdis. Including the
ideality factor n1, the final expression reads

Rdark
s ¼

ydark

tanh ydarkð Þ
Rhomþ

ydark

tanh ydarkð Þ
�1

� �
n1VT

1:6J
ð15Þ

ydark ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Rdis

Rhomþ n1VT=1:6J
� �

s

This dependence is shown in Fig. 3 as solid lines labeled
‘‘empirical dark’’. For all parameters these lines nicely fit the
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Table 1
Comparison of Rs data obtained from evaluating EL data and different evaluations

of the dark and illuminated characteristics.

Parameter EL Rs Constant Rs from

I–V curve

Current-dependent Rs

Rdis [O cm2] 0.4870.02 0.8770.17

Rhom [O cm2] 0.8370.02 0.0970.08

Rdark
s (Jsc) [O cm2] 1.2870.04 0.85 0.7770.01

Rill
s (Jsc) [O cm2] 1.3470.04 1.17 1.0470.11
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numerically obtained values. For the illuminated case, Araújo
et al. [6] have derived expressions for the open circuit and the
short circuit case (Eqs. (20) and (21) in [6]). By interpolating
between these two cases, we propose the following expression for
the current-dependent Rs under illumination, again including the
ideality factor n1:

Rill
s ¼

yill

tanh yillð Þ
Rhomþ

yill

tanh yillð Þ
�1

� �
n1VT

Jsc�J
þ

J

Jsc

� �b

�n1VT

Jsc
ln

2affiffiffiffi
p
p

erfðaÞ

� �
þ

1

2
Rdis

	 

ð16Þ

yill ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Rdis

Rhomþ n1VTð Þ= Jsc�J
� �

s
a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3RdisJsc

2n1VT

r
b¼ 1þ

RhomJsc

1:5n1VT

Also this dependence matches the limiting values for high and
low current densities for arbitrary values of Rhom and Rdis reported
by Araújo et al. [6]. This dependence is also shown in Fig. 3 as
dashed lines labeled ‘‘empirical illum.’’. These lines nicely fit the
numerically obtained values for all chosen parameters, too.

5. Application to measured I–V characteristics

The previous simulations only regarded the ideal diode current
(diffusion current, assumed to be homogeneous) but did not take
into account any depletion region recombination current nor an
ohmic shunt current. It has been discussed already in Section 1
that these different current contributions are flowing in different
positions, only the diffusion current is flowing more or less
homogeneously, depending on the local bulk lifetime, but the
other two current contributions are flowing in certain (usually
different) local positions. Thus, actually the different components
should be described by different Rs values, as it had been
proposed e.g. in [19]. On the other hand, the depletion region
recombination and the ohmic component usually dominate at
low voltages where the influence of the series resistance is low.
Therefore, for not unnecessarily increasing the number of para-
meters, here we will apply one and the same current-dependent
series resistance to the total cell current.

First we will try to fit the EL-based series resistance data from
Fig. 1 to the linear one-dimensional model, having in mind that this
can only be a coarse approximation since (6)–(8) only hold in the
low-current limit, which certainly does not hold for the current above
2.6 A used for the EL measurements. As indicated in Fig. 1(c), the
measured EL Rs resistance profile can be modeled reasonably by
assuming Rhom¼0.83 O cm2 plus a distributed sheet resistance lead-
ing to Rmax

dis ¼0.66 O cm2. According to (8) and (9) this would
correspond to a global Rdis¼0.442 O cm2, hence at low currents the
series resistance is expected to be about RhomþRdis¼1.272 O cm2.
Regarding the active length of d¼3.75 cm of the symmetry element
in Fig. 1(b), this Rdis corresponds to a sheet resistance of rs¼

0.094 Osqr. Applying this value to our model with the slightly different
d¼3.9 cm (since the distance of the edges to the busbars was larger
than half the distance between the busbars) will increase the Rdis to
0.478 O cm2 as indicated in Table 1. For a grid distance of D¼

0.233 cm rs leads to a grid resistance of Rgrid¼rs/D¼0.405 O/cm.
We also have measured the total resistance between the two busbars
to be 0.0415 O. 67 grid lines in parallel with 7.3 cm length leads
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to Rgrid¼0.380 O/cm. This agrees reasonably to Rgrid¼0.405 O/cm
estimated by evaluating the series resistance profile in Fig. 1(c).
General uncertainties of the EL-based Rs imaging results will be
discussed below.

The next task is to fit the dark characteristic to our variable
resistance model, and then these results will be used to fit also
the illuminated characteristic. At the beginning the low-current
part of the characteristic (up to 3 mA/cm2) is fitted to the two-
diode model in the conventional way. This curve fitting was per-
formed by using a code kindly provided by Greulich (Fraunhofer
ISE, Freiburg, Germany), which was also used in [10]. In this
current range the series resistance is still almost constant (see
Fig. 3) and the general influence of Rs is still weak. A value of Rs

eventually appearing from this fit represents the sum of Rhom and
Rdis, but this number shows a large uncertainty since the voltage
drop at Rs is very low. By this fit the parameters J01, J02, n2, and Rp

are obtained with sufficient accuracy. Knowing these parameters,
the open circuit voltage Voc may be obtained, which is indepen-
dent of Rs. If we do this with the data of our cell assuming n1¼1,
Voc appears about 5 mV smaller than measured. This deviation
may be caused by an injection level-dependent lifetime in the
bulk, which leads to an ideality factor of the diffusion current of
n141 [3,20]. Indeed, by assuming n1¼1.06 in the two-diode
parameter fit, the correct value of Voc can be simulated from the
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Table 2
Two-diode parameters obtained for dark and illuminated I–V characteristic

illuminated I–V characteristics simulated by these parameters.

Parameter Measured (850 nm) Fixed Rs

Dark Illum

J01 [A/cm2] 1.50�10�12 1.36�

n1 1.00 1.00

J02 [A/cm2] 8.18�10�9 1.17�

n2 2.00 3.65

Rp [O cm2] 41855 1832

Rs [O cm2] 0.85 1.17

Simulated illuminated I–V

Voc [mV] 611.9 610.7 613.6

Jsc [mA/cm2] 33.1 33.1 33.1

FF [%] 76.8 78.3 76.6

Z [%] 15.56 15.84 15.5
dark characteristic. This procedure for obtaining n1 is much more
accurate than using n1 as an independent fitting parameter in the
two-diode fit. Note, however, that the assumption of n141
changes the magnitude of J01 significantly, which is then not
comparable with J01-values obtained conventionally by assuming
n1¼1 anymore. This ideality factor of n1¼1.06 was also used for
calculating the Rs image from two EL images taken at 0.548 and
0.597 V [17]. Note also that care must be taken at the I–V

characteristic measurements for ensuring that all characteristics
are measured at a cell temperature of 25 1C, e.g. by performing
the illuminated measurements at a chuck temperature slightly
lower than 25 1C to compensate the heating of the cell during
the measurement. The difference between an ideality factor of
1.0 and 1.06 corresponds to a temperature difference of about
18 K.

Now, knowing the two-diode parameters, for all current
densities J43 mA/cm2 the diode voltages Vdiode(J) (without the
influence of Rs) may be calculated. The resulting Jsc–Voc (suns-Voc)
curve is plotted as red dash-dotted line in Fig. 4. Together with
the measured dark characteristic Jdark(V), resp. Vdark(J), the
current-dependent lumped Rs-values are evaluated according to:

Rs Jð Þ ¼
VdarkðJÞ�VdiodeðJÞ

J
ð17Þ

Fig. 5 shows the result of this procedure for our cell, together
with the dependencies expected by (15) for several sets of the
parameters Rhom and Rdis. It turns out that the resistance para-
meters obtained in Section 2 by evaluating the EL-based Rs image
do not lead to the optimum fit. Instead, Rdis is more and Rhom is
less pronounced in the I–V characteristics evaluation, compared
to the EL evaluation. This leads to values of Rdark

s (Jsc) and Rill
s (Jsc)

which are just about 60 % to 77 % of the values estimated from the
EL evaluation. These deviations will be discussed later. The
optimum fit parameters for the dark characteristic are given in
Table 1 and Table 2. The resulting fit of the measured dark I–V

characteristic is plotted as a solid blue line in Fig. 4. Additionally,
the measured dark I–V data (including the high current values)
were fitted conventionally assuming a constant Rs and n1¼1. The
obtained parameters are also given in Table 2. The fit with this
fixed Rs, shown in Fig. 4 as a green dashed line, does not
significantly deviate from our fit using a variable Rs. However,
as the data in Table 2 show, for a fixed Rs the data of Rs and of J01

significantly differ between dark and illuminated characteristics.
As it becomes visible in the inset of Fig. 4, the Jsc–Voc-curve
corresponding to the fit with the fixed Rs and n1¼1 (blue dotted
line) results in a slightly lower Voc than measured, which is also
indicated by an arrow in this inset.
s with current-dependent Rs and fixed Rs as well as the corresponding

Variable Rs

inated Dark 0.1 sun 1.0 sun

10�12 5.57�10�12 5.57�10�12 5.57�10�12

1.06 1.06 1.06

10�6 5.17�10�8 1.53�10�7 3.7�10�6

2.76 3.2 4.8

5 44421 44421 44421

current-dependent

-curve parameters

612.4 612.4

33.1 33.1

77.15 76.7

6 15.64 15.56



O. Breitenstein, S. Rißland / Solar Energy Materials & Solar Cells 110 (2013) 77–8684
Now the illuminated characteristic will be fitted. Since we
have no access to an AM 1.5 cell tester, we are using illuminated
characteristics measured for various illumination intensities by
homogeneous irradiation with monochromatic (850 nm) light,
with the intensity chosen to match the value of Jsc given by the
producer of the cell (here 33.1 mA/cm2). For evaluating these
illuminated characteristics it is useful to display them logarith-
mically in the style of a dark characteristic by subtracting Jsc from
all illuminated current values, as it has been done also e.g. by
Araújo et al. [6]. We have measured the I–V characteristics for
illumination intensities of 1 sun and of 0.1 sun and have corrected
their voltages by applying the current-dependent Rs values given
by (16) using the already evaluated Rhom and Rdis given in Table 1.
Note that in the presence of a finite shunt resistance Rp the J(0 V)
equals not Jsc due to the voltage drop caused by Rs. Since in our
case the illuminated I–V characteristic is firstly corrected by Rill

s (J),
the determined corrected J(0 V) equals Jsc and can be used to shift
the illuminated I–V curve. The appearing error in the estimation
of Jsc due to a finite Rp for the calculation of Rs

ill in Eq. (16) is much
lower than the error due to fitting Rhom and Rdis from the dark I–V

characteristic. Fig. 6(a) shows these Rs corrected and Jsc shifted
I–V characteristics together with the ‘‘suns-Voc’’ dark characteristic,
based on the measured dark characteristic with the voltages
corrected by the dark Rs values of (15). In comparison with the
dark characteristic the illuminated I–V curve at 0.1 sun intensity
indicates a good correspondence, while there are significant devia-
tions observable for the I–V curve at 1 sun intensity. These devia-
tions are so large that they cannot be explained by any errors of Rs

anymore, hence they are not a result of the distributed character of
Rs. This deviation is a result of a well-known departure from the
superposition principle, which had been described already in 1994
[12]. In this paper, based on PC1D-simulations, two kinds of
departures are reported, which are ‘departure 1’ appearing for
strongly injection level-dependent recombination, e.g. at an oxi-
dized backside, and ‘departure 2’ appearing for significant recom-
bination in the bulk and/or at the backside. We believe that for our
cell departure 2 is active, since the bulk recombination is only
weakly injection level-dependent (n1 still very close to unity), but
there is significant recombination at the Al back contact and in the
multicrystalline bulk. According to [12] this deviation leads to an
additional current-dependent recombination path and may be
described by an additional contribution to the parallel conductance
and/or to the second diode (J02, n2). Since this effect depends on the
current density, it becomes negligible at low illumination intensity,
which has been observed e.g. also in [10]. Hence, if this departure
from the superposition principle holds (which should be the case
for all industrial solar cells), it cannot be expected that the two-
diode evaluation of illuminated characteristics leads to the same
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values of J02, n2 and/or Rp as the evaluation of the dark character-
istic. This departure from the superposition principle leads to a
systematic reduction of the fill factor, which has nothing to do with
the series resistance and cannot be explained only from the dark
characteristic. Note that Fong et al. [11] have not observed this
effect, which was probably due to the fact that they have investi-
gated only monocrystalline high-efficiency type cells. Therefore, we
propose here to fit the Rs corrected and Jsc shifted illuminated
characteristic for full illumination intensity by a two-diode model,
independent of the results of the fit of the dark characteristic.
Fig. 6(a) shows the result of this fit (black dash-dotted line), and
Table 2 contains the two-diode parameters obtained for the two
illumination intensities. Since we already have adjusted n1 to lead
to the correct value of Voc, this fit leads to the same value of J01 as
the dark fit did. This, together with the very good match between
the measured and simulated curves in Fig. 6(a), indicates that our
approach to describe the dark and the illuminated characteristic by
the same two Rs parameters is indeed correct.

As already mentioned before, the different parameters
obtained from the I–V curves characterizes effects with different
physical origins [21]. The parameter J01 mainly characterize the
carrier lifetime in the bulk. There is an ongoing discussion
whether the grain boundaries or intra-grain defects (dislocations)
are most detrimental for solar cells. The presently dominating
opinion is that the effect of the intra-grain defects is dominating,
because the grain boundaries occupy only a negligible area
fraction. However, it has been shown in [22] that in defect-rich
regions of multicrystalline cells J01 may be dominated by the grain
boundaries. In contrast to this strong material-induced influence
on J01, the recombination current density, which is described by J02

and n2 in the dark I–V curve, is essentially process-related, since it
is mostly caused by extended defects crossing the p–n junction as
cracks or badly passivated cell edges [21]. The J02 and n2-values
obtained from the illuminated I–V curve contain an additional
recombination contribution due to the increased carrier density
under illumination, as it was discussed before.

As it was done for the dark I–V characteristic, additionally a
conventional analysis based on the two-diode model with a fixed
Rs was made for the illuminated characteristic. In addition to
fitting the measured illuminated characteristics data, the para-
meters of the dark characteristic were used to construct an
illuminated characteristic, which was also analyzed, see lower
part of Table 2. Again, here the ideality factor of the diffusion
current is fixed to n1¼1 and thus the calculated Voc is 610.7 mV
being slightly below the measured value. The corresponding
lumped dark Rs is 0.85 O cm2 (see Table 2) and is still in the
same range as the current-dependent Rs

dark (see Fig. 5). Since the
Rill

s is in reality even higher, also the fill factor FF and the efficiency
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Z are overestimated in comparison to the measured values by this
approach. To classify the data given in Table 2 it has to be noted
that due to inaccuracies in the I–V curve measurement of about
DV¼0.5 mV and DJ¼0.01 mA/cm2 the FF can just be evaluated
up to a precision of about 0.2 %abs., which corresponds to an
accuracy of about roughly 0.02 %abs. in Z.

Fitting the illuminated I–V characteristic directly with fixed Rs,
all parameters differ from that of the dark fit as given in Table 2.
According to Fig. 6(b), the Rs correction with resulting constant Rill

s

does not lead to a straight line in the semi-logarithmic plot, thus the
diode-equation cannot be fitted well and even Voc does not match
the measured value. Even though the measured data around MPP
are described well, the Rs corrected measured data in Fig. 6(b)
deviate by more than 4 mV from the characteristic simulated with
fixed Rs in the bias range between 550 mV and 600 mV. Therefore
the influence of Rs is overestimated by this approach. In comparison
to the above introduced new method implying a variable Rs, the
fit with fixed Rs and n1¼1 on the illuminated I–V characteristic,
especially in the voltage range above Vmpp, is clearly worse (see
Fig. 7) and is not based on a meaningful parameter set describing
dark and illuminated I–V curve at the same time. By evaluating the
solar cell with an ideality factor n1¼1.03 (not shown here), the J01

values of the dark and illuminated fit with fixed Rs are almost the
same (J01¼2.82�10�12 A/cm2) and the Voc converges toward the
measured once, but the fit in the bias range between 550 mV and
590 mV is still as poor as with n1¼1. Therefore it is obviously not
possible to characterize the dark and illuminated I–V characteristic
by the same set of two-diode parameters just with different but
constant series resistance values for the dark and illuminated mea-
surement. Applying the current-dependent Rs approach extracts a
meaningful parameter set and allows to estimate the illuminated
I–V characteristic correctly based on measurements done in the
dark. The departure from the superposition principle caused by the
injection level-dependent recombination leads here to an over-
estimation of the FF of just 0.4 %abs. and thus a prediction of the
efficiency up to an error of 0.1 %abs. can be expected.
6. Discussion

It has been shown by many authors and also by our com-
parisons that it is possible to fit dark and illuminated I–V
characteristics of crystalline silicon solar cells separately, with
an accuracy sufficient for most purposes, to a two-diode model
implying a fixed series resistance. Then, however, at least if high
currents are employed, the two-diode parameters become different
between the dark and illuminated cases. We have shown here that
this discrepancy is due to two different reasons. First, the distributed
character of the series resistance influences the high-current part of
both characteristics, thus leading to different values of Rs and J01.
This may be regarded in good approximation by defining the global
distributed series resistance of the cell Rdis as a new parameter, in
addition to the homogeneous series resistance Rhom. At low currents
(below 0.1 Isc) Rdis is constant and has to be added to Rhom. For
currents above 0.1 Isc, Rdis becomes current-dependent and may be
described by the empirical formulas given in this paper, which also
consider Rhom. The second reason for the deviations between dark
and illuminated characteristics is the departure from the super-
position principle described by Robinson et al. [12]. This departure is
due to an additional current-dependent bulk recombination under
illumination and is basically due to the fact that, at one and the
same local bias, the minority carrier concentration in the bulk is
higher under illumination and current extraction than in the dark. It
should be mentioned that this departure is the physical reason why
in photoluminescence (PL) imaging techniques always the PL image
under short circuit condition has to be subtracted from all other PL
images [5,23]. The minority carriers existing at zero local bias (short
circuit) in the bulk just generate the recombination, which is
responsible for the short circuit PL signal and for the additional
current loss under illumination. Also this effect is dependent on the
illumination intensity and becomes negligible for low intensities.
This departure leads to significantly increased values of J02 and n2

and, in extreme cases, also to a reduced value for Rp for the
illuminated characteristic [12]. Hence, at least if the illuminated
characteristic is measured under full illumination intensity, it cannot
be expected that the second diode and Rp parameters match that of
the dark characteristic. These deviations are not due to the dis-
tributed character of Rs, these two mechanisms have to be clearly
distinguished from each other. However, the values of Rs and J01

should be the same in the dark and under illumination for the
consistent description of a solar cell, which is the case for our
current-dependent Rs approach introduced here.

The deviations appearing between the Rs contributions obtained
from EL Rs and the fit of the current-dependent Rs (see Fig. 1(c) and
Table 1) are significant and need to be explained. It had already been
mentioned that the EL data are based on the low-current approxima-
tion of the one-dimensional description of the distributed series
resistance, which certainly does not hold for the 0.597 V/2.67 A
measurement used for EL. According to this analysis, the value of
Rhom is significantly larger and that of Rdis is significantly lower than
that obtained from the analysis of the I–V characteristics. It has to be
noted that the EL images underlying this analysis have been taken by
using another sample stage than that used for measuring the I–V

characteristics. It cannot be excluded that this stage did contribute
slightly to the global series resistance, which could increase Rhom.
Indeed, the current measured for the EL measurement (2.67 A)
was significantly lower than that measured in the I–V characteristic,
when VB¼597 mV was applied (3.04 A). Furthermore, the EL images
analysis performed here did only consider the distributed resistance
of the grid lines, but not that of the emitter. This may explain at least
partly the higher Rdis values obtained by evaluating the I–V char-
acteristics. Finally, the whole EL analysis is based on the assumption
of the validity of the so-called Fuyuki approximation [14,16,24]. This
approximation says that the local EL signal is proportional to the local
diffusion length LD, and that the local J01 is indirectly proportional to
LD. However, this proportionality was derived by Fuyuki et al. [24]
only for solar cells being thick compared to LD, which is not the case
here. Moreover, this theory does not regard any depth-dependent
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reabsorption of the EL radiation, which becomes important if the EL
image is detected by a silicon detector, as in our case. One indication
of the inaccuracy of the EL-based local Rs values is given by the fact
that the Rs image shown in Fig. 1(a) obviously contains residues of the
local lifetime distribution. Hence, a possible invalidity of the approx-
imations underlying the EL-based Rs analysis may lead to a serious
deviation between the EL-based and the I–V characteristics-based Rs

values. Finally, since the global I–V characteristic has to be described
by the ideality factor n1¼1.06, the same assumption was made in the
EL Rs procedure. However, we do not know whether this ideality
factor is the same in all positions of the cell, which also might
influence the EL evaluation.

It should be mentioned again that the two-diode model
regarding a distributed series resistance introduced here is only
applicable if the cell is essentially homogeneous. If it contains e.g.
extended non-contacted regions showing a significantly increased
local Rs, or if J01 shows strong local inhomogeneities, it cannot be
expected that our procedure will describe such a cell correctly.
The method was applied for the evaluation of 5 cells, also with
different grid design. Four of them show results similar to the
presented example. The fifth cell shows a voltage difference
between the dark and the reduced illuminated characteristic of
about 6 mV. EL investigations of this cell according to [16] have
revealed that it shows a strong local inhomogeneity in J01 and
therefore cannot be analyzed by the method mentioned above.
7. Summary and outlook

Within the two-diode model, a consistent description of the dark
and illuminated characteristic is impossible with one and the same
fixed series resistance, and it leads to residual discrepancies (e.g.
different J01 values) even if two different fixed series resistances are
assumed. We have shown here that it is possible to describe the dark
and illuminated I–V characteristics very accurately by a single
consistent set of diffusion current and Rs parameters, if the distrib-
uted character of the series resistance is regarded. This procedure
introduces only one additional parameter by splitting the series
resistance Rs into the two components Rhom and the global distrib-
uted series resistance Rdis. The analysis proposed in this work consists
of several steps. First, the dark characteristic up to a current value of
about 0.1 Jsc is conventionally fitted to a two-diode model assuming a
constant Rs, leading to reliable values of J01, J02(dark), n2(dark), and
Rp(dark). For correctly matching the open circuit voltage, it is
proposed to increase n1 slightly until the suns-Voc characteristic
calculated with these parameters matches Voc at Jsc. This measure is
justified by the fact that, especially in multicrystalline solar cells, the
lifetime is known to be dependent on the injection intensity [3,20].
Then, by comparing the suns-Voc with the measured dark character-
istic for currents larger than 0.1 Jsc, the current-dependent dark series
resistance is experimentally obtained and fitted to the empirical
dependence (15), leading to the values of Rhom and Rdis. Finally, by
using these values and J01 and n1, the illuminated characteristic is
fitted, leading to new values of J02(ill.), n2(ill.) and, in certain cases,
probably also of Rp(ill.). The difference between these values and that
obtained from the dark characteristic is due to the departure from the
superposition principle described in [12].

The procedure proposed here will be implemented in a code
for evaluating dark and illuminated I–V characteristics, which will
be made commercially available to the public [25].
Acknowledgment

The authors are indebted to J. Greulich (Fraunhofer ISE, Freiburg,
Germany) for providing the code used for the ‘‘conventional’’ fit of
the dark and illuminated I–V curves and to J.-M. Wagner (University
Kiel) for valuable discussions. This work was financially supported
by the German Federal Ministry for the Environment, Nature
Conservation and Nuclear Safety and by industry partners within
the research cluster ‘‘SolarWinS’’ (Contract no. 0325270C). The
content is the responsibility of the authors.

References

[1] O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil,
M.C. Schubert, W. Warta, Can luminescence imaging replace lock-in thermo-
graphy on solar cells? IEEE Journal of Photovoltaics 1 (2011) 159–167.

[2] C.T. Sah, R.N. Noice, W. Shockley, Carrier generation and recombination in
p–n junctions and p–n junction characteristics, Proceedings of the IRE 45
(1957) 1228–1243.

[3] D. Macdonald, A. Cuevas, Reduced fill factors in multicrystalline silicon solar
cells due to injection-level dependent bulk recombination lifetimes, Progress
in Photovoltaics Research and Application 8 (2000) 363–375.

[4] S. Steingrube, O. Breitenstein, K. Ramspeck, S. Glunz, A. Schenk, P.P. Altermatt,
Explanation of commonly observed shunt currents in c-Si solar cells by
means of recombination statistics beyond the Shockley-Read-Hall approx-
imation, Journal of Applied Physics 110 (2011) 014515.

[5] T. Trupke, E. Pink, R.A. Bardos, M.D. Abbott, Spatially resolved series
resistance of silicon solar cells obtained from luminescence imaging, Applied
Physics Letters 90 (2007) 093506.
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