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Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3
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On the basis of detailed ab initio studies, the influence of strain on the anisotropy of the transport distribution
of the thermoelectrics Bi2Te3 and Sb2Te3 was investigated. Both tellurides were studied in their own as well as in
their copartner’s lattice structure to gain insight into the electrical transport in epitaxial heterostructures composed
of both materials. It is shown that the anisotropy of the transport distribution overestimates the experimental
findings for Bi2Te3, implying anisotropic scattering effects. An increase of the in-plane lattice constant leads to
an enhancement of the transport anisotropy for p doping, whereas the opposite occurs for n doping. The recent
findings and special features of the transport distribution are discussed in detail in relation to the topology of the
band structures.
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I. INTRODUCTION

Thermoelectric (TE) materials have huge potential for
power generation, heat pumping, and refrigeration. However,
their practical application is restricted because of the low
performance of the TE devices compared to traditional fossil-
fuel power generators and compressor-based refrigerators.1

A high-performance TE material has to be a good electrical
conductor as well as a poor thermal conductor and, at the same
time, possess a large Seebeck coefficient.2 Quantitatively, the
efficiency of TE devices is expressed by the dimensionless
figure of merit ZT ,

ZT = α2σT/(κL + κe), (1)

where α, σ , and T are the Seebeck coefficient, electrical
conductivity, and absolute temperature, and κL, κe are phonon
and electron contributions to the total thermal conductivity,
respectively.

Bismuth and antimony tellurides, Bi2Te3 and Sb2Te3, and
the alloys based on these materials play a significant role in
thermoelectric technology. Early studies of the (Bix ,Sb2-x)Te3

compounds in the late 1950s already reported ZT ∼ 1 at room
temperature,3 which was confirmed by further experiments.4

This value remains, even to date, the maximal one available
at room temperature for bulk materials. Current progress in
nanostructure fabrication, in particular the epitaxial growth
of high-quality superlattices,5 encourages the possibility of
significant performance improvement of TE devices. Venkata-
subramanian et al. reported ZT ∼ 2.4 and ZT ∼ 1.45 at
300 K for p-type and n-type Bi2Te3/Sb2Te3 superlattices,
respectively.6

These experimental advances motivated extensive theoret-
ical studies of the electronic structure of the bulk bismuth and
antimony telluride aimed toward understanding the possible
origin of the increased thermoelectic performance in the multi-
layered structures. While in previous years only a few ab initio
band-structure calculations of the bulk bismuth telluride7,8

could be mentioned, in the last decade various aspects of the
electronic structure of both pure and doped bulk Bi2Te3 and
Sb2Te3, as well as their transport properties, were discussed in
Refs. 9–21. Ab initio studies of the electronic structure and the

transport properties of Bi2Te3/Sb2Te3 superlattices were also
reported.22

An explanation of directional anisotropy of the transport
properties in Bi2Te3/Sb2Te3 superlattices could play a crucial
role in the understanding of their increased figure of merit.
Venkatasubramanian et al.6 found a strong dependence of the
anisotropy of the carrier mobility on both the superlattice pe-
riod and the relative thickness of the constituents. The enhance-
ment of the electrical conductivity parallel to the epitaxial
growth direction, i.e., the trigonal axis of the rhombohedral
lattice of bismuth and antimony tellurides, together with the
possibility to suppress the lattice thermal conductivity κL along
this direction, could provide the desirable ZT enhancement.
It is reasonable to assume that the epitaxial growth of the
layered structures affects essentially the out-of-plane transport
compared to the bulk constituents. Therefore, the synthesis of
the high-performance thermoelectric materials should, among
others, provide a decrease of the in-plane versus out-of-plane
current anisotropy.

In this study, we concentrate on the anisotropy of the
transport properties in the bulk Bi2Te3 and Sb2Te3 as a first
step toward understanding the corresponding properties of the
Bi2Te3/Sb2Te3 superlattices. Since epitaxial growth always
implies lattice distortions, we included, as discussed below,
the effect of the lattice relaxation in our study.

II. CRYSTAL STRUCTURE

Both bismuth and antimony telluride possess the rhom-
bohedral crystal structure with five atoms, i.e., one formula
unit per unit cell belonging to the space group D5

3d (R3̄m).
The experimental lattice parameters23 are arh

BiTe = 10.473 Å,
θBiTe = 24.17◦, and arh

SbTe = 10.447 Å, θSbTe = 23.55◦, where
θ is the angle between the rhombohedral basis vectors of the
length arh. In order to emphasize the layered character of this
structure, it is convenient to rearrange it into the hexagonal
unit cell built up by three formula units, as shown in Fig. 1.
The hexagonal cell contains 15 atoms grouped in the three
“quintuple” layers, Te1-Bi(Sb)-Te2-Bi(Sb)-Te1, where Te1
and Te2 are two different crystal types of tellurium atoms. The
“hexagonal” lattice parameters are ahex

BiTe = 4.384 Å, chex
BiTe =

30.487 Å, and ahex
SbTe = 4.264 Å, chex

SbTe = 30.458 Å, for Bi2Te3
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FIG. 1. (Color online) The rhombohedral unit cell superimposed
with the hexagonal one to emphasize the layered character of the
material.

and Sb2Te3, respectively. In bismuth telluride, the nearest
interatomic distances between the individual monolayers
inside the quintuple blocks are 3.07 Å for Te1-Bi and 3.25 Å for
Bi-Te2. Two adjacent quintuple layers in Bi2Te3 are separated
by a somewhat longer distance, 3.63 Å for Te1-Te1. In the
antimony telluride, these distances are 2.98 Å for Te1-Sb,
3.17 Å for Sb-Te2 inside the quintuple blocks, and 3.74 Å for
Te1-Te1 between the blocks.

In the Bi2Te3/Sb2Te3 multilayers, atoms change their bulk
positions due to the mismatch of the lattice parameters. The
description of the realistic crystal structure of the multi-
layers is beyond the scope of this study. Nonetheless, we
modeled Bi2Te3 with the experimental lattice parameters and
interatomic distances of Sb2Te3, and vice versa. Since both
materials have very similar lattice parameter chex along the z

axis, this variation is essentially compression and extension of
the lattice in the xy plane for bismuth and antimony telluride,
respectively. We assume that one could estimate the effect of
the lattice relaxation on the electronic and transport properties
in the Bi2Te3/Sb2Te3 heterostructures from these two limiting
cases.

III. CALCULATIONAL DETAILS

Calculations of the electronic structures were performed
by means of the screened Korringa-Kohn-Rostoker (KKR)
Green’s function method24 in the atomic sphere approximation
(ASA) within the local density approximation of the density
functional theory in the parametrization of Vosko et al.25 The
angular momentum expansion was cut off at lmax = 3. It is
generally recognized that the effects of spin-orbit coupling are
mandatory for the correct treatment of the band structure in
these materials. Therefore, we used a fully relativistic version
of the method based on the Dirac equation.26 The obtained

self-consistent band structures were used for the calculations of
the transport distribution σαβ within the Boltzmann formalism,
assuming a constant relaxation time τ ,27

σαβ(E) = τ
e2

(2π )3h̄

∑
j

∫
εj (k)=E

dS
v

j
α(k)vj

β(k)

|vj (k)| ,

(2)

vj (k) = 1

h̄
�k εj (k),

where εj (k) is the jth band energy at the k-point of the Brillouin
zone (BZ), and α and β denote Cartesian coordinates. In this
approach, the carrier-scattering probability is averaged over
the initial and final states, and is independent of a specific
scattering mechanism. This assumption is reliable as far as the
electronic band-structure effects on the transport properties are
concerned.

In layered systems, the relaxation time is, in general,
anisotropic. In particular, Ashworth et al.28 extracted the
values of τxx/τzz ∼ 2 in both n- and p-doped Bi2Te3 at
small carrier concentrations from the galvanomagnetic and
de Haas-van Alphen measurements.29 With an increase of the
carrier concentration, the anisotropy of the relaxation time
decays smoothly. The exact behavior of this decay depends on
a type of carrier scattering in the material, and should not
be affected by a small symmetry-conserving lattice strain.
The total transport anisotropy includes the band-structure
contribution modulated by the relaxation-time anisotropy.
However, the sense of the change, i.e., increase or decrease,
due to the small lattice strain should not be influenced by this
modulation. Therefore, we assume the relaxation time to be
isotropic. In this approximation, the transport anisotropy ratio
σxx/σzz is independent of the relaxation time, and we do not
have to specify it.

The k-space integration over the isoenergetic surfaces was
performed using the tetrahedron method on the Blöchl mesh33

of 96 × 96 × 96 points in the whole BZ. In the energy intervals
of the width about 0.1 eV in the vicinity of both band edges,
the integration was refined by means of an adaptive mesh up to
4 × 4 × 4 times as dense as the original one. As a convergence
criterium, we used the values of the transport anisotropy ratio
calculated from the effective mass approximation at the band
extrema.30

IV. ELECTRONIC STRUCTURES AND
TRANSPORT PROPERTIES

The electronic band structures for Bi2Te3 and Sb2Te3 for
both experimental and strained lattices are shown in Fig. 2.
The positions of the high-symmetry points in the BZ of the
rhombohedral structure are denoted in Fig. 3. Our results
at the experimental lattice parameters agree well with the
previous ab initio studies of Mishra et al.,8 Larson et al.9

for Bi2Te3, and Eremeev et al.21 for both Bi2Te3 and Sb2Te3.
At the same time, the calculations made with the full-potential
linearized augmented plane-wave (FLAPW) method result in
slightly different band structures for the bismuth and antimony
tellurides at both the experimental10–13,19 and strained18,20

lattices. The key question of the band structure of Bi2Te3

and Sb2Te3 is the position of the valence-band maximum
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FIG. 2. (Color online) Band structures of Bi2Te3 and Sb2Te3 along symmetry lines for both experimental (solid lines) and strained (dashed
lines) lattices. Energies are given relative to the VBM.

(VBM) and conduction-band minimum (CBM) in the BZ.
The calculations of Refs. 10–13 and 19 result in both a
six-valley VBM and CBM located in the symmetry plane
(
ZU ), in agreement with experiments for both the bismuth31

and antimony32 tellurides. Unlike these results, in our case
the CBM of Bi2Te3 at both lattice parameters, aBiTe and aSbTe,
is a two-valley minimum located on the symmetry line 
Z,
similarly to Ref. 8. Our calculations also detected the six-valley
local conduction-band minimum (LCBM) that occurred in the
plane (
ZU ), however, at slightly higher energy. For Sb2Te3

at the experimental lattice parameters, we found a direct band
gap located at the center of the BZ, while at the larger in-plane
lattice constant, both the six-valley VBM and CBM lie in the
symmetry plane (
ZU ). The electronic structures of Bi2Te3

and Sb2Te3 near the band gap at a = aBiTe along the lines
connecting band extrema in the symmetry plane (
ZU ) are
shown in Fig. 4. In contrast to our results, Thonhauser14 found
that the increase of the lattice parameters in Sb2Te3 led to the
formation of a direct band gap at the 
 point. On the other hand,
the negative hydrostatic pressure discussed in Ref. 14 implies
an increase of both in-plane and out-of-plane lattice parameters
in comparable degree, while in our study essentially the first
one is included. Additionally, calculations in Ref. 14 were
performed for optimized atomic positions with respect to the
total energy, which can affect the band structure of antimony
telluride.18

As already discussed,8,10 these differences in the band
structures are probably due to the nonspherical part of the
potential, which is not included in the ASA. At the same
time, as discussed below, these differences have no significant

Z U

Γ
F L

kx ky

kz

FIG. 3. (Color online) Brillouin zone of the rhombohedral lattice.

impact on the transport distribution, σ (E). The details of the
band structures for all four systems are compiled in Table I.

The calculated transport distribution of Bi2Te3 at both the
experimental (a = aBiTe) and compressed (a = aSbTe) lattice
parameters are shown in Fig. 5 together with the anisotropy
ratio, σxx/σzz. In terms of the rigid band model, the energies
below and above the band gap simulate p and n doping,
respectively. While for p doping close to the VBM, σxx/σzz

varies smoothly approaching the limiting value, the ratio
increases drastically and forms a prominent two-peak structure
for the n-doping case. This structure originates from the two
topological transformations of the constant energy surfaces in
the conduction band. Figure 6(a) shows the contour plot of
ε(k) for Bi2Te3 at a = aBiTe in the plane (
ZU ) for energies
0 to 0.19 eV relative to the conduction band edge. The main
features of the band structure are the global CBM on the line

Z, the LCBM at (0.666, 0.602, 0.602), and the two saddle
points, s1 at (0.722, 0.667, 0.667) and s2 at (0.493, 0.461,
0.461), in crystallographic coordinates. The saddle point s1

occurs at E − ECBM = 0.05 eV and causes the first peak of
σxx/σzz, while s2 appears at 0.17 eV and forms the second peak.
At room temperature, the chemical potential would be located
in the saddle point s1 or s2, for an electron carrier concentration
of about N = 3.0 × 1019 cm−3 or N = 1.5 × 1020 cm−3,
respectively.

Now we address the question of whether the electronic
structure of Bi2Te3 with the six-valley CBM reported in
Refs. 10–13,18, and 19 would result in a significantly different
transport anisotropy near the band gap for n doping. The
six-valley conduction band structure can be approximately
modeled from the two-valley one detected in our KKR-ASA
calculation by an energy shift of ∼0.04 eV downward and
upward for the LCBM and CBM, respectively [see Fig. 4(a)].
This model band structure would have a limiting value of
σxx/σzz = 4.95 at the conduction-band edge as calculated
from the effective mass approximation at the LCBM, which is
fairly close to 4.7 at the CBM. Since the saddle point s1 lies
close to the line connecting the CBM and LCBM, the relative
shift of the minima would not affect remarkably its energy
position, and the model band structure would also result in a

165208-3



B. YU. YAVORSKY, N. F. HINSCHE, I. MERTIG, AND P. ZAHN PHYSICAL REVIEW B 84, 165208 (2011)

TABLE I. Band-structure parameters: Band gap in eV, positions of VBM and CBM in crystallographic coordinates, effective masses in
electron mass units, principal axes ei in Cartesian coordinates, and transport anisotropy ratio from the effective mass approximation.

Bi2Te3

Lattice parameters a = aBiTe a = aSbTe

Gap (eV) 0.105 0.129

Extremum VBM CBM VBM CBM

Position 0.517 0.366 0.366 0.173 0.173 0.173 0.405 0.405 0.335 0.151 0.151 0.151

Effective masses
m1 −0.024 0.178 −0.039 0.154
m2 −0.134 0.178 −0.077 0.154
m3 −1.921 0.835 −0.207 1.370

Principal axes
e1 0.500 −0.867 0.000 1.000 0.000 0.000 0.866 0.499 −0.024 1.000 0.000 0.000
e2 0.600 0.346 0.721 0.000 1.000 0.000 0.500 −0.867 0.000 0.000 1.000 0.000
e3 0.625 0.361 −0.693 0.000 0.000 1.000 0.021 0.012 0.999 0.000 0.000 1.000

σxx/σzz 5.452 4.700 4.020 9.013

Sb2Te3

Lattice parameters a = aSbTe a = aBiTe

Gap (eV) 0.090 0.140

Extremum VBM CBM VBM CBM

Position 0.000 0.000 0.000 0.000 0.000 0.000 0.547 0.392 0.392 0.004 0.020 0.020

Effective masses
m1 −0.054 0.045 −0.039 1.124
m2 −0.054 0.045 −0.083 1.774
m3 −0.102 0.114 −2.046 6.861

Principal axes
e1 1.000 0.000 0.000 1.000 0.000 0.000 0.500 −0.867 0.000 −0.316 −0.183 0.931
e2 0.000 1.000 0.000 0.000 1.000 0.000 0.594 0.343 0.727 0.500 −0.867 0.000
e3 0.000 0.000 1.000 0.000 0.000 1.000 0.630 0.363 −0.686 0.806 0.465 0.365

σxx/σzz 1.889 2.507 2.397 2.080

peak of σxx/σzz at ∼0.05 eV relative to the conduction-band
edge. As we already discussed, the second peak in the transport
anisotropy at E − ECBM = 0.17 eV occurs from the saddle
point s2 close to the local band maximum at Z. This topological
feature was detected both in the FLAPW10–13,18,19 method and
in our KKR-ASA calculations. Based on this consideration, we
expect that the transport anisotropy of the bismuth telluride at
the experimental lattice parameters is stable with respect to
a slight modification between the two-valley and six-valley
conduction bands.

In Bi2Te3, the in-plane compression of the lattice pa-
rameters from a = aBiTe to a = aSbTe increases the transport
anisotropy ratio at the conduction-band edge remarkably.
Within the effective mass approximation, this can be explained
by the enhancement of the ratio m⊥/m‖ due to the expansion
of the BZ in the xy plane. At the same time, σxx/σzz decreases
at the valence-band edge. In this case, the compression of
the lattice results in a reorientation of the longest axis of
the effective mass ellipsoid near the VBM closer to the z

axis, which leads to an increase of the transport anisotropy

(a) (b)

FIG. 4. (Color online) Band structures of (a) Bi2Te3 and (b) Sb2Te3 at a = aBiTe near the band gap along the lines shown in the insets.
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FIG. 5. (Color online) Transport distribution σxx(E) and σzz(E) and the transport anisotropy σxx/σzz for Bi2Te3 at the experimental and
compressed lattice parameters. Crosses at the band edges mark the σxx/σzz ratio derived from the effective mass model30 using the parameters
of Table I.

ratio, and at the same time decreases the anisotropy of the
dominating effective masses m2 and m3 (see Table I). The last
effect prevails over the enhancement of σxx/σzz due to the
rotation of the effective mass ellipsoid.

Figure 7 shows the transport distribution and the anisotropy
ratio of Sb2Te3 at both a = aSbTe and a = aBiTe. The kink
of the anisotropy ratio at the experimental lattice parameters
is induced by the saddle point s = (0.831, 0.784, 0.784)
at E − EVBM = 0.116 eV, which corresponds to a hole
carrier concentration of N = 5.8 × 1019 cm−3 at 300 K. This
topology is illustrated in Fig. 6(b), which shows the contour
plot of ε(k) in the valence band of the antimony telluride for
energies −0.24 to 0 eV relative to EVBM. The in-plane expan-
sion of the lattice parameter increases the density of the
occupied states near the valence-band edge and suppresses the
kink. The transport anisotropy ratio increases with the in-plane

compression of the BZ at the valence-band edge, and, at the
same time, decreases at the conduction-band edge due to the
larger angle between the z axis and the largest axis of the
effective mass ellipsoid, similarly to the discussed changes in
bismuth telluride.

Now we discuss the effect of the lattice strain on the
in-plane and out-of-plane transport separately. In bismuth
telluride, the enhancement of the anisotropy ratio σxx/σzz

at the conduction-band edge due to the in-plane compres-
sion is associated essentially with the decrease of the σzz

component. In particular, the effective mass approximation at
the CBM gives the values of σzz(aSbTe)/σzz(aBiTe) = 0.61 and
σxx(aSbTe)/σxx(aBiTe) = 1.15. At the same time, the reduction
of the anisotropy at the valence-band edge is implied by a
slight increase of 1.24 times of the out-of-plane component
and a decrease of 0.92 times of the in-plane component,

Γ

Z

CBM

LCBM

s1

s2

Bi2Te3 a=aBiTe

Γ
VBM

Z

Z

s

Sb2Te3 a=aSbTe

(a) (b)

FIG. 6. (Color online) Contour plots of ε(k) at the experimental lattice constants in the plane (
ZU ). (a) Bi2Te3: 10 isolines for (E − ECBM)
at 0 to 0.19 eV with a constant increment (dotted); additionally, two isolines at E − ECBM = 0.05 eV and E − ECBM = 0.17 eV with the saddle
points s1 and s2, respectively (bold). The positions of the CBM and the LCBM are marked with crosses. (b) Sb2Te3: 10 isolines for (E − EVBM)
at −0.24 to 0 eV with a constant increment (dotted); additionally, one isoline with the saddle point s (bold). The position of the VBM is marked
with a cross.
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FIG. 7. (Color online) Transport distribution and the transport anisotropy for Sb2Te3 at the experimental and expanded lattice parameters.
Crosses at the band edges mark the σxx/σzz derived from the effective mass model30 using the parameters of Table I.

respectively. In antimony telluride, the in-plane expansion
decreases significantly both the in-plane and out-of-plane
transport. At the valence-band edge, the decrease of 0.49
and 0.26 was found within the effective mass model for
the in-plane and out-of-plane components, respectively. An
even more pronounced decrease of σxx(aBiTe)/σxx(aSbTe) =
0.18 and σzz(aBiTe)/σzz(aSbTe) = 0.21 was detected at the
conduction-band edge. However, because of the similar rates
of decrease for both the in-plane and out-of-plane components,
the lattice expansion has only a modest effect on the transport
anisotropy ratio σxx/σzz in Sb2Te3 at both the conduction- and
valence-band edges.

V. CONCLUSIONS

On the basis of ab initio electronic structures obtained with
the fully relativistic KKR method, we studied the anisotropy
of the transport properties of the bismuth and antimony
tellurides in the constant relaxation-time approximation within
the Boltzmann formalism. In addition to the systems with the
experimental lattice parameters, we modeled bismuth telluride
within the lattice of Sb2Te3, and vice versa. We found that

a decrease of the in-plane lattice parameters increases the
transport anisotropy for the n doping and, at the same time,
decreases the anisotropy for the p-doped case. In order to
estimate the possible influence of the lattice strain on the ther-
moelectric performance, in particular the out-of-plane current,
in Bi2Te3/Sb2Te3 superlattices, we discussed separately the
effect of the in-plane structural relaxation on both the in-plane
and out-of-plane transport at the band-gap edges. A slight
enhancement of σzz due to the in-plane expansion was detected
for the p-doped bismuth telluride. In all other cases, the strain
led to a decrease of the out-of-plane component. These effects
can be understood within the effective mass approximation at
the valence-band maximum and conduction-band minimum,
respectively.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs-
gemeinschaft, Grant No. SPP 1386 “Nanostrukturierte Ther-
moelektrika: Theorie, Modellsysteme und kontrollierte Syn-
these.”

*bogdan.yavorsky@physik.uni-halle.de
1F. J. DiSalvo, Science 285, 703 (1999).
2L. E. Bell, Science 321, 1457 (2008).
3C. B. Satterthwaite and R. W. Ure, Phys. Rev. 108, 1164 (1957);
F. D. Rosi, B. Abeles, and R. S. Jensen, J. Phys. Chem. Solids 10,
191 (1959).

4J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer,
J. Phys. Chem. Solids 49, 1237 (1988); T. Caillat, M. Carle,
P. Pierrat, H. Scherrer, and S. Scherrer, ibid. 53, 1121 (1992).

5R. Venkatasubramanian, T. Colpitts, B. O’Quinn, S. Liu,
N. El-Masry, and M. Lamvik, Appl. Phys. Lett. 75, 1104 (1999).

6R. Venkatasubramanian, E. Siilova, T. Colpitts, and B. O’Quinn,
Nature (London) 413, 597 (2001).

7G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mettheiss,
W. A. Sunder, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev.
B 46, 1553 (1992).

8S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter
9, 461 (1997).

9P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B 61,
8162 (2000).

10S. J. Youn and A. J. Freeman, Phys. Rev. B 63, 085112 (2001).
11T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V.

Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).
12T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and

G. D. Mahan, Phys. Rev. B 68, 085201 (2003).
13P. Larson, Phys. Rev. B 68, 155121 (2003).
14T. Thonhauser, Solid State Commun. 129, 249 (2004).
15M. Kim, A. J. Freeman, and C. B. Geller, Phys. Rev. B 72, 035205

(2005).
16P. Larson, Phys. Rev. B 74, 205113 (2006).
17S. Lee and P. von Allmenn, Appl. Phys. Lett. 88, 022107 (2006).
18G. Wang and T. Cagin, Phys. Rev. B 76, 075201 (2007).

165208-6

http://dx.doi.org/10.1126/science.285.5428.703
http://dx.doi.org/10.1126/science.1158899
http://dx.doi.org/10.1103/PhysRev.108.1164
http://dx.doi.org/10.1016/0022-3697(59)90074-5
http://dx.doi.org/10.1016/0022-3697(59)90074-5
http://dx.doi.org/10.1016/0022-3697(88)90182-5
http://dx.doi.org/10.1016/0022-3697(92)90087-T
http://dx.doi.org/10.1063/1.124610
http://dx.doi.org/10.1038/35098012
http://dx.doi.org/10.1103/PhysRevB.46.1553
http://dx.doi.org/10.1103/PhysRevB.46.1553
http://dx.doi.org/10.1088/0953-8984/9/2/014
http://dx.doi.org/10.1088/0953-8984/9/2/014
http://dx.doi.org/10.1103/PhysRevB.61.8162
http://dx.doi.org/10.1103/PhysRevB.61.8162
http://dx.doi.org/10.1103/PhysRevB.63.085112
http://dx.doi.org/10.1103/PhysRevB.68.125210
http://dx.doi.org/10.1103/PhysRevB.68.085201
http://dx.doi.org/10.1103/PhysRevB.68.155121
http://dx.doi.org/10.1016/j.ssc.2003.10.006
http://dx.doi.org/10.1103/PhysRevB.72.035205
http://dx.doi.org/10.1103/PhysRevB.72.035205
http://dx.doi.org/10.1103/PhysRevB.74.205113
http://dx.doi.org/10.1063/1.2162863
http://dx.doi.org/10.1103/PhysRevB.76.075201


ELECTRONIC STRUCTURE AND TRANSPORT ANISOTROPY . . . PHYSICAL REVIEW B 84, 165208 (2011)

19B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).
20M. S. Park, J.-H. Song, J. E. Medvedeva, M. Kim, I. G. Kim, and

A. J. Freeman, Phys. Rev. B 81, 155211 (2010).
21S. V. Eremeev, Yu. M. Koroteev, and E. V. Chulkov, JETP Lett. 91,

387 (2010).
22H. Li, D. Bilc, and S. D. Mahanti, Mat. Res. Soc. Symp. Proc. 793,

S8.37 (2003).
23Numerical Data and Functional Relationship in Science and

Technology, edited by O. Madelung, M. Schulz, and H. Weiss,
Landolt-Börnstein, New Series, Group III, Vol. 17f (Springer, New
York, 1983); R. W. G. Wyckoff, Crystal Structures 2, (Wiley, New
York, 1964); Th. L. Anderson, H. Krause, and H. Brigitte, Acta
Crystallogr. B 30, 1307 (1974).

24R. Zeller, P. H. Dederichs, B. Újfalussy, L. Szunyogh, and
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